日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在邊長(zhǎng)為6的等邊三角形紙片△ABC的邊AB,AC上分別取點(diǎn)D,E,使沿直線DE折疊三角形紙片后,定點(diǎn)A正好落在邊BC上(設(shè)為點(diǎn)P),設(shè)∠DAP=θ,BD=y.
          (1)試用θ表示y;
          (2)求y的最大值.
          分析:(1)連接DP,通過(guò)∠BAP=θ,BD=y,推出AD=PD=6-y,在三角形BDP中,利用正弦定理列出關(guān)于y的方程,表示出y.
          (2)根據(jù)θ的范圍,得出120°-2θ的范圍,根據(jù)正弦函數(shù)的圖象與性質(zhì)得出正弦函數(shù)的最大值,進(jìn)而得出y的最小值,即為AD的最小值.
          解答:解:連接DP,因?yàn)椤螪AP=θ,BD=y,可得AD=PD=6-y,則有∠BAP=∠APD=θ,
          ∠BDP=∠BAP+∠APD=2θ,
          在△BDP中,
          6-y
          sin60°
          =
          y
          sin(120°-2θ)
          ,
          解得y=
          6sin(120°-2θ)
          sin60°+sin(120°-2θ)
          ,其中0°≤θ≤60°.
          (2)因?yàn)?°≤θ≤60°,∴0°≤120°-2θ≤120°,
          ∴y=6-
          3
          3
          sin60°+sin(120°-2θ)
          ,∴y≤6-
          3
          3
          3
          2
          +1
          =24-12
          3
          ,
          當(dāng)θ=15°時(shí)取“=”,
          ∴y的最大值為24-12
          3
          點(diǎn)評(píng):此題考查了折疊的性質(zhì),三角形的外角性質(zhì),正弦定理,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,等邊三角形ABC的邊長(zhǎng)為6,在AB上截取AD,過(guò)D點(diǎn)作DF⊥AB,交AC于點(diǎn)F,過(guò)D點(diǎn)作DE⊥BC,交BC于點(diǎn)E.設(shè)AD=x,四邊形DECF的面積為y.
          (1)寫出y關(guān)于x的函數(shù)解析式并指出函數(shù)的定義域;
          (2)當(dāng)AD等于多少時(shí),y有最大值,并求出最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知一幾何體的三視圖如圖,主視圖與左視圖為全等的等腰直角三角形,直角邊長(zhǎng)為6,俯視圖為正方形,(1)求點(diǎn)A到面SBC的距離;(2)有一個(gè)小正四棱柱內(nèi)接于這個(gè)幾何體,棱柱底面在面ABCD內(nèi),其余頂點(diǎn)在幾何體的棱上,當(dāng)棱柱的底面邊長(zhǎng)與高取何值時(shí),棱柱的體積最大,并求出這個(gè)最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=O,△PAC是邊長(zhǎng)為2的等邊三角形,PB=PD=
          6
          ,AP=4AF.
          (Ⅰ)求證:PO⊥底面ABCD;
          (Ⅱ)求直線CP與平面BDF所成角的大;
          (Ⅲ)在線段PB上是否存在一點(diǎn)M,使得CM∥平面BDF?如果存在,求
          BM
          BP
          的值,如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          圖6

          我們把由半橢圓=1(x≥0)與半橢圓=1(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.

          如圖6,點(diǎn)F0、F1、F2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2分別是“果圓”與x、y軸的交點(diǎn).〔(文)M是線段A1A2的中點(diǎn)〕

          (1)(理)若△F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程.

          (2)(理)當(dāng)|A1A2|>|B1B2|時(shí),求的取值范圍.

          (文)設(shè)P是“果圓”的半橢圓=1(x≤0)上任意一點(diǎn),求證:當(dāng)|PM|取得最小值時(shí),P在點(diǎn)B1、B2或A1處.

          (3)(理)連結(jié)“果圓”上任意兩點(diǎn)的線段稱為“果圓”的弦.試研究:是否存在實(shí)數(shù)k,使斜率為k的“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上?若存在,求出所有可能的k值;若不存在,請(qǐng)說(shuō)明理由.

          (文)若P是“果圓”上任意一點(diǎn),求|PM|取得最小值時(shí)點(diǎn)P的橫坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案