日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          12
          ax2+(1-a)x-1-lnx,a∈R.
          (1)若a=2,求函數(shù)的單調(diào)減區(qū)間.
          (2)若函數(shù)在區(qū)間(3,6)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
          分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)小于0,可得函數(shù)的單調(diào)減區(qū)間.
          (2)求導(dǎo)數(shù),利用導(dǎo)數(shù)大于0,結(jié)合函數(shù)在區(qū)間(3,6)上存在單調(diào)遞增區(qū)間,可求a的取值范圍.
          解答:解:(1)函數(shù)的定義域?yàn)椋?,+∞)
          a=2時(shí),f′(x)=2x-1-
          1
          x
          =
          (x-1)(2x+1)
          x
          ,
          ∵x>0,
          ∴x>1時(shí),f′(x)>0,函數(shù)單調(diào)增;
          0<x<1時(shí),f′(x)<0,函數(shù)單調(diào)減,∴函數(shù)的單調(diào)減區(qū)間為(0,1);
          (2)求導(dǎo)函數(shù)可得f′(x)=ax+1-a-
          1
          x
          =
          ax2+(1-a)x-1
          x

          令f′(x)>0,則∵x>0,∴(x-1)(ax+1)>0
          ∵函數(shù)在區(qū)間(3,6)上存在單調(diào)遞增區(qū)間,
          2(3a+1)>0
          5(6a+1)>0

          ∴a>-
          1
          6
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          |x|
          ,g(x)=1+
          x+|x|
          2
          ,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
          A、(-∞,-1)∪(0,1)
          B、(-∞,-1)∪(0,
          -1+
          5
          2
          )
          C、(-1,0)∪(
          -1+
          5
          2
          ,+∞)
          D、(-1,0)∪(0,
          -1+
          5
          2
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1,x∈Q
          0,x∉Q
          ,則f[f(π)]=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1-x
          ax
          +lnx(a>0)

          (1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=1時(shí),求f(x)在[
          1
          2
          ,2
          ]上的最大值和最小值;
          (3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
          1
          2
          +
          1
          3
          +
          1
          4
          +
          +
          1
          n
          恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=1+cos2x-2sin2(x-
          π
          6
          ),其中x∈R,則下列結(jié)論中正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=1+logax(a>0,a≠1),滿(mǎn)足f(9)=3,則f-1(log92)的值是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案