日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓:,離心率為,焦點(diǎn)的直線交橢圓于兩點(diǎn),且的周長為4.

          (Ⅰ)求橢圓方程;

          (Ⅱ) 直線與y軸交于點(diǎn)P(0,m)(m0),與橢圓C交于相異兩點(diǎn)A,B且.若,求m的取值范圍。

           

          【答案】

          (Ⅰ) ;(Ⅱ)

          【解析】

          試題分析:(1)設(shè)C:(A>b>0),由條件知A-C=,由此能導(dǎo)出C的方程.(Ⅱ)由題意可知λ=3或O點(diǎn)與P點(diǎn)重合.當(dāng)O點(diǎn)與P點(diǎn)重合時,m=0.當(dāng)λ=3時,直線l與y軸相交,設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2),再由根的判別式和韋達(dá)定理進(jìn)行求解.

          試題解析:(1)設(shè)C:(A>b>0),設(shè)C>0,,由條件知A-C=,,∴A=1,b=C=,故C的方程為:;

          (Ⅱ)設(shè)與橢圓C的交點(diǎn)為A(,),B(,)。將y=kx+m代入

          ,所以①,

          .因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122209474093554794/SYS201312220951141027883678_DA.files/image017.png">,所以,

          消去,所以,

          ,當(dāng)時,

          所以,由①得,解得

          考點(diǎn):1、直線與圓錐曲線的綜合問題;2、向量在幾何中的應(yīng)用.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點(diǎn)為F1,F(xiàn)2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個公共點(diǎn),若
          |PF1|
          |PF2|
          =e,則e的值為(  )
          A、
          3
          3
          B、
          3
          2
          C、
          2
          2
          D、
          6
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
          2
          3
          ,點(diǎn)M的橫坐標(biāo)為
          9
          2

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E的離心率為e,兩焦點(diǎn)為F1、F2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個交點(diǎn),若
          |PF1|
          |PF2|
          =e,則e的值為
          3
          3
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的離心率為e=
          6
          3
          ,一條準(zhǔn)線方程為x=
          3
          2
          2

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)動點(diǎn)P滿足:
          OP
          =
          OM
          +
          ON
          ,其中M,N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-
          1
          3
          ,問:是否存在兩個定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點(diǎn)分別為F1、F2,拋物線C以F1頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個交點(diǎn),
          |PF1|
          |PF2|
          =e
          ,則e的值為
          3
          3
          3
          3

          查看答案和解析>>

          同步練習(xí)冊答案