日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓O:x2+y2=r2及圓外一點(diǎn)P(a,b),過點(diǎn)P作圓O的兩條切線PA,PB,切點(diǎn)分別為A,B,求直線AB的方程.

          答案:
          解析:

            分析:過圓外一點(diǎn)P作圓的切線PA,PB,有PA=PB.由此,以點(diǎn)P為圓心,PA為半徑構(gòu)造輔助圓,則弦AB可以看作已知圓與輔助圓的公共弦.

            解:由切線長定理得PA=PB,以P為圓心,PA為半徑構(gòu)造圓P,則AB可看作圓O與圓P的公共弦.如圖,由切線的性質(zhì)得|PA|2=|PO|2-|OA|2=a2+b2-r2

            所以圓P的方程為(x-a)2+(y-b)2=a2+b2-r2.、

            又圓O的方程為x2+y2=r2,、

           、伲,得ax+by-r2=0.

            所以直線AB的方程為ax+by-r2=0.

            點(diǎn)評:本題若按常規(guī)思路,需先求得切線方程,再設(shè)法求得切點(diǎn)坐標(biāo),才能求出直線AB的方程.顯然構(gòu)造輔助圓,將問題轉(zhuǎn)化為求兩圓的公共弦方程更巧妙.


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:遼寧省沈陽二中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:013

          已知圓O:x2+y2=1,點(diǎn)P在直線上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是

          [  ]
          A.

          [-2,2]

          B.

          [0,2]

          C.

          [-1,1]

          D.

          [0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

                 已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|;

                 (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點(diǎn)P落在根軸上;

                 (Ⅱ)求切線長|PA|的最小值;

          (Ⅲ)給出定點(diǎn)M(0,2),設(shè)P、Q分別為直線l和圓O上動點(diǎn),求|MP|+|PQ|的最小值及此時點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(ab)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

          (1)求a、b間關(guān)系;

          (2)求|PQ|的最小值;

          (3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(ab)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

          (1)求a、b間關(guān)系;

          (2)求|PQ|的最小值;

          (3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓O:x2+y2=1,圓C:(x-2)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|.

          (1)求實(shí)數(shù)a、b間滿足的等量關(guān)系;

          (2)求切線長|PA|的最小值;

          (3)是否存在以P為圓心的圓,使它與圓O相內(nèi)切并且與圓C相外切?若存在,求出圓P的方程;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案