日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實數(shù)x的取值滿足條件1≤2x
          2
          ,求函數(shù)f(x)=log2(-3x2+x+
          5
          4
          )
          的最大值與最小值.
          分析:由已知中件1≤2x
          2
          ,我們易求出實數(shù)x的取值范圍,令U=-3x2+x+
          5
          4
          ,則我們可以求出U的取值范圍,然后根據(jù)對數(shù)函數(shù)的單調(diào)性,即可求出滿足條件的函數(shù)f(x)=log2(-3x2+x+
          5
          4
          )
          的最大值與最小值.
          解答:解:1≤2x
          2
          ?0≤x≤
          1
          2

          U=-3x2+x+
          5
          4
          ,對稱軸為x=
          1
          6
          ∈[0,
          1
          2
          ]

          則當(dāng)x=
          1
          6
          時,Umax=
          4
          3
          ;當(dāng)x=
          1
          2
          時,Umax=1
          所以1≤U≤
          4
          3
          ,又y=log2U在[1,
          4
          3
          ]
          上遞增
          所以當(dāng)U=1即x=
          1
          2
          時,ymin=0
          當(dāng)U=
          4
          3
          x=
          1
          6
          時,ymax=log2
          4
          3
          =2-log23
          點評:本題考查的知識點是對數(shù)函數(shù)的值域與最值,其中利用指數(shù)函數(shù)的單調(diào)性根據(jù)已知求出滿足條件的x的取值范圍,是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          11、若函數(shù)y=f(x)滿足:①對任意的a、b∈R恒有f(a+b)=f(a)+f(b)+2ab;②y=f(x)圖象的一條對稱軸方程是x=k;③y=f(x)在區(qū)間[1,2]上單調(diào)遞增,則實數(shù)k的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
          (1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
          (2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)a∈ (
          3
          2
           , 3)
          ),當(dāng)n為奇數(shù)時,動點P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點D(2,
          2
          )
          ,求軌跡C1與C2的方程;
          (3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于
          2
          3
          3
          ,求實數(shù)x0的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•青島二模)已知函數(shù)f(x)=
          1
          3
          x3-ax2+(a2-1)x+ln(a+1)
          (其中a為常數(shù))
          (Ⅰ)若f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍;
          (Ⅱ)若存在一條與y軸垂直的直線和函數(shù)Γ(x)=f(x)-(a2-1)x+lnx的圖象相切,且切點的橫坐標x0滿足x0>2,求實數(shù)a的取值范圍;
          (Ⅲ)記函數(shù)y=f(x)的極大值點為m,極小值點為n,若2m+5n≥
          3
          sinx
          cosx+2
          對于x∈[0,π]恒成立,試求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
          (1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
          (2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時,動點P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點,求軌跡C1與C2的方程;
          (3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x,0)(x>0)的最小距離不小于,求實數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
          (1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
          (2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時,動點P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點,求軌跡C1與C2的方程;
          (3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x,0)(x>0)的最小距離不小于,求實數(shù)x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案