日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】數(shù)列
          (1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項a8;
          (2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項和S5

          【答案】
          (1)解:設(shè)數(shù)列{an}的公差為d,由已知a6=10,S5=5,

          ,

          解得 ,

          所以a8=a1+7d=﹣5+7×3=16.

          (或者a8=a6+2d=10+2×3=16)


          (2)解:解法一:設(shè)數(shù)列{bn}的公比為q,由已知 ,

          解得 ,

          所以 = =

          解法二:設(shè)數(shù)列{bn}的公比為q.

          ,得

          從而得

          又因為 ,

          從而得b1=8.(9分)

          所以 =


          【解析】(1)由等差數(shù)列通項公式列出方程組,求出首項與公差,由此能求出該數(shù)列的第8項a8 . (2)法一:由等比數(shù)列通項公式列出方程組,求出首項與公比,由此能求出該數(shù)列的前5項和S5;法二:由 ,得 ,從而求出公比,進而得b1 , 由此能求出該數(shù)列的前5項和S5
          【考點精析】通過靈活運用等差數(shù)列的通項公式(及其變式)和等比數(shù)列的前n項和公式,掌握通項公式:;前項和公式:即可以解答此題.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】【2017福建三明5月質(zhì)檢】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】我國是世界上嚴重缺水的國家.某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
          (Ⅰ)求直方圖中a的值;
          (Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
          (Ⅲ)估計居民月均水量的中位數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了增強環(huán)保意識,我校從男生中隨機抽取了60人,從女生中隨機抽取了50人參加環(huán)保知識測試,統(tǒng)計數(shù)據(jù)如下表所示:

          優(yōu)秀

          非優(yōu)秀

          總計

          男生

          40

          20

          60

          女生

          20

          30

          50

          總計

          60

          50

          110


          (1)試判斷是否有99%的把握認為環(huán)保知識是否優(yōu)秀與性別有關(guān);
          (2)為參加市里舉辦的環(huán)保知識競賽,學校舉辦預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學通過預(yù)選賽的概率為 ,現(xiàn)在環(huán)保測試中優(yōu)秀的同學中選3人參加預(yù)選賽,若隨機變量X表示這3人中通過預(yù)選賽的人數(shù),求X的分布列與數(shù)學期望.
          附:K2=

          P(K2≥k)

          0.500

          0.400

          0.100

          0.010

          0.001

          k

          0.455

          0.708

          2.706

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C的中心在坐標原點,離心率 ,且其中一個焦點與拋物線 的焦點重合.
          (1)求橢圓C的方程;
          (2)過點S( ,0)的動直線l交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項和為Sn=n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1
          (1)求數(shù)列{an},{bn}的通項公式.
          (2)設(shè)cn=anbn , 求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點;命題q:曲線=1表示焦點在y軸上的雙曲線,若p∧q為真命題,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)f(x)=x2+bx+c(其中b,c為實常數(shù)).
          (1)若b>2,且y=f(sinx)(x∈R)的最大值為5,最小值為﹣1,求函數(shù)y=f(x)的解析式;
          (2)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函數(shù)y=f(x)的解析式;若不存在,請說明理由.
          (3)記集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
          ①若A≠,求證:B≠
          ②若A=,判斷B是否也為空集.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】【2017四川宜賓二診】如甲圖所示,在矩形中, , 的中點,將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

          求證: 平面

          (Ⅱ)求二面角的余弦值.

          查看答案和解析>>

          同步練習冊答案