日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知﹣1,a1 , a2 , 8成等差數(shù)列,﹣1,b1 , b2 , b3 , ﹣4成等比數(shù)列,那么 的值為( )
          A.﹣5
          B.5
          C.
          D.

          【答案】A
          【解析】解:∵﹣1,a1 , a2 , 8成等差數(shù)列,
          ∴2a1=﹣1+a2①,2a2=a1+8②,
          由②得:a1=2a2﹣8,
          代入①得:2(2a2﹣8)=﹣1+a2 ,
          解得:a2=5,
          ∴a1=2a2﹣8=10﹣8=2,
          又﹣1,b1 , b2 , b3 , ﹣4成等比數(shù)列,
          ∴b12=﹣b2>0,即b2<0,
          ∴b22=(﹣1)×(﹣4)=4,
          開方得:b2=﹣2,
          = =﹣5.
          故選A
          【考點精析】解答此題的關(guān)鍵在于理解等差數(shù)列的性質(zhì)的相關(guān)知識,掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列,以及對等比數(shù)列的基本性質(zhì)的理解,了解{an}為等比數(shù)列,則下標成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】綜合題
          (1)已知函數(shù)f(x)=2x+ (x>0),證明函數(shù)f(x)在(0, )上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (2)記函數(shù)g(x)=a|x|+2ax(a>1) ①若a=4,解關(guān)于x的方程g(x)=3;
          ②若x∈[﹣1,+∞),求函數(shù)g(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知a∈R,函數(shù)f(x)=x2﹣2ax+5.
          (1)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實數(shù)a的值;
          (2)若不等式x|f(x)﹣x2|≤1對x∈[ , ]恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知側(cè)棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,點D是AB的中點.

          (1)求證:AC⊥BC;
          (2)求證:AC1∥平面CDB1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,E是矩形ABCD中AD邊上的點,F(xiàn)是CD上的點,AB=AE= AD=4,現(xiàn)將△ABE沿BE邊折至△PBE位置,并使平面PBE⊥平面BCDE,且平面PBE⊥平面PEF.

          (1)求 的比值;
          (2)求二面角E﹣PB﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實數(shù)m的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若y=f(x)=Asin(ωx+φ)(A>0,ω>0, 的部分圖象如圖所示.
          (I)求函數(shù)y=f(x)的解析式;
          (II)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象;若y=g(x)圖象的一個對稱中心為 ,求θ的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 , 滿足| |=| =1,且|k + |= | ﹣k |(k>0),令f(k)= . (Ⅰ)求f(k)= (用k表示);
          (Ⅱ)若f(k)≥x2﹣2tx﹣ 對任意k>0,任意t∈[﹣1,1]恒成立,求實數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an}中,a1=2,a2=3,an>0,且滿足an+12﹣an=an+1+an2(n∈N*).
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè) ,求數(shù)列{bn}的前n項和Tn;
          (3)設(shè) (λ為正偶數(shù),n∈N*),是否存在確定λ的值,使得對任意n∈N* , 有Cn+1>Cn恒成立,若存在,求出λ的值,若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案