日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ((本小題滿分12分)
          中心在原點,焦點在x軸上的橢圓,率心率,此橢圓與直線交于A、B兩點,且OA⊥OB(其中O為坐標原點).
          (1)求橢圓方程;
          (2)若M是橢圓上任意一點,、為橢圓的兩個焦點,求的取值范圍;

          (1)
          (2)
          (1)設橢圓方程為
            ∵ ,,
            ∴ 橢圓方程化簡為 
          ∵ 橢圓與直線相交,
          解方程組:
            由①代入②,代簡得
            根據韋達定理,設A(,),B(,),
            
            
          其中:.  
          時,cos有最小值為0,此時,有最大值為,當時,
          即M點與橢圓長軸左端點重合,有最小值為0,故
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設橢圓的左右焦點分別為、,是橢圓上的一點,且,坐標原點直線的距離為
          (1)求橢圓的方程;
          (2) 設是橢圓上的一點,過點的直線軸于點,交軸于點,若,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          直線與橢圓恒有公共點,則實數(shù)的取值范圍為(   )
          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題


          橢圓G的兩個焦點、M是橢圓上一點,且滿足.                                    
          (1)求離心率的取值范圍;
          (2)當離心率取得最小值時,點到橢圓上的點的最遠距離為;
          ①求此時橢圓G的方程;
          ②設斜率為)的直線與橢圓G相交于不同的兩點A、BQAB的中點,問:AB兩點能否關于過點、Q的直線對稱?若能,求出的取值范圍;若不能,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題共14分)
          已知橢圓的中心在坐標原點,長軸長為,離心率,過右焦點的直線交橢圓于兩點.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)當直線的斜率為1時,求的面積;
          (Ⅲ)若以為鄰邊的平行四邊形是矩形,求滿足該條件的直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)

          已知菱形的頂點在橢圓上,對角線所在直線的斜率為1.
          (1)當直線過點時,求直線的方程;
          (2)當時,求菱形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          橢圓上一點M到焦點的距離為2,的中點,
          等于( *** )
          A.2B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (示范高中)如圖,已知橢圓(a>b>0)的離心率,過點的直線與原點的距離為
          (1)求橢圓的方程;
          (2)已知定點,若直線與橢圓交于、兩點.問:是否存在的值,使以為直徑的圓過點?請說明理由.
           

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設A、B分別為橢圓的左、右頂點,橢圓的長軸長為4,且點在該橢圓上。
          (I)求橢圓的方程;
          (II)設P為直線x=4上不同于點(4,0)的任意一點,若直線AP與橢圓相交于A的點
          M,證明:為銳角三角形

          查看答案和解析>>

          同步練習冊答案