日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          lg(x2-2x)
          9-x2
          的定義域?yàn)锳,
          (1)求A;
          (2)若B={x|x2-2x+1-k2≥0},且A是B的真子集,求實(shí)數(shù)k的取值范圍.
          分析:(1)根據(jù)函數(shù)成立的條件求函數(shù)的定義域即可求A;
          (2)利用A是B的真子集,建立條件關(guān)系即可求實(shí)數(shù)k的取值范圍.
          解答:解:(1)由
          x2-2x>0
          9-x2>0
          ,----------------------------------------------------------(2分)
          解得-3<x<0或2<x<3,
          ∴A=(-3,0)∪(2,3)---------------(4分)
          (2)法一:B中[x-(1-k)][x-(1+k)]≥0--------------------------------------(6分)

          若1-k=1+k,即k=0時(shí),此時(shí)B=R,符合題意;----------------------(8分)
          若1-k<1+k,即k>0時(shí),此時(shí)B=(-∞,1-k]∪[1+k,+∞),
          由A是B的真子集得
          1+k≤2
          1-k≥0
          k>0
          ⇒0<k≤1,-----------------------------------(10分)
          若1-k>1+k,即k<0時(shí),此時(shí)B=(-∞,1+k]∪[1-k,+∞),
          由A是B的真子集得
          1-k≤2
          1+k≥0
          k<0
          ⇒-1≤k<0,-------------------------------(12分)
          綜上得k∈[-1,1]------------------------------------------------------------------(14分)
          法二:∵x∈A時(shí)總有x∈B,
          ∴x∈(-3,0)∪(2,3)時(shí)總有k2≤(x-1)2----(8分)
          ∴k2≤1,k∈[-1,1];----------------------------------------------------------------(12分)
          此時(shí),顯然有-4∈B但-4∉A,
          ∴A是B的真子集,綜上得k∈[-1,1]--(14分)
          點(diǎn)評(píng):本題主要考查函數(shù)定義域的求法以及集合關(guān)系的應(yīng)用,要注意對(duì)集合B要進(jìn)行分類(lèi)討論.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線(xiàn)方程為y=5x+1,求實(shí)數(shù)a,b的值:
          (2)當(dāng)a<3時(shí),令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點(diǎn)P(2,f(2))處的切線(xiàn)方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達(dá)式和切線(xiàn)l的方程;
          (2)當(dāng)x∈[
          1
          e
          ,e]
          時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線(xiàn)l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
          (1)求直線(xiàn)l的方程及a的值;
          (2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線(xiàn)l與x軸的交點(diǎn)在曲線(xiàn)y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實(shí)數(shù),x∈R,a∈R.
          (1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線(xiàn)f(x)相切的直線(xiàn)l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案