日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          lnx+ax
          (a∈R)
          (Ⅰ)求f(x)的極值;
          (Ⅱ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍;
          (Ⅲ)設(shè)各項(xiàng)為正的數(shù)列{an}滿(mǎn)足:a1=1,an+1=lnan+an+2,n∈N*,求證:an2n-1
          分析:(Ⅰ)確定函數(shù)的定義域,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,從而可得函數(shù)的極值;
          (Ⅱ)分類(lèi)討論:①當(dāng)e1-a<e2,即a>-1時(shí),f(x)在(0,e1-a)上是增函數(shù),在(e1-a,e2)上是減函數(shù),可得函數(shù)的最值,利用函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),可得實(shí)數(shù)a的取值范圍;
          ②當(dāng)e1-a≥e2,即a≤-1時(shí),f(x)在區(qū)間(0,e2]上是增函數(shù),可得函數(shù)的最值,利用函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),從而可得結(jié)論;
          (Ⅲ)先證明lnx≤x-1,從而可證an+1=lnan+an+2≤2an+1,由此可證結(jié)論.
          解答:(Ⅰ)解:函數(shù)的定義域?yàn)椋?,+∞),求導(dǎo)數(shù)f′(x)=
          1-(lnx+a)
          x2
          ,
          令f′(x)=0得x=e1-a
          當(dāng)x∈(0,e1-a)時(shí),f′(x)>0,∴f(x)是增函數(shù);
          當(dāng)x∈(e1-a,+∞),f′(x)<0,∴f(x)是減函數(shù);
          ∴f(x)在x=e1-a處取得極大值,f(x)極大值=f(e1-a)=ea-1,無(wú)極小值.
          (Ⅱ)解:①當(dāng)e1-a<e2,即a>-1時(shí),
          由(Ⅰ)知,f(x)在(0,e1-a)上是增函數(shù),在(e1-a,e2)上是減函數(shù),
          f(x)max=f(e1-a)=ea-1…(7分)
          ∵若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),
          ∴ea-1≥1
          ∴a≥1
          ∵a>-1,∴a≥1
          ②當(dāng)e1-a≥e2,即a≤-1時(shí),f(x)在區(qū)間(0,e2]上是增函數(shù),
          ∴f(x)在區(qū)間(0,e2]上的最大值為f(e2)=
          2+a
          e2

          ∴原問(wèn)題等價(jià)于
          2+a
          e2
          ≥1

          ∴a≥e2-2
          ∵a≤-1,∴無(wú)解
          綜上,實(shí)數(shù)a的取值范圍是[1,+∞).
          (Ⅲ)證明:令a=1,由(Ⅰ)知,
          lnx+1
          x
          ≤1(x>0)
          ,∴l(xiāng)nx≤x-1,
          ∵a1=1,假設(shè)ak≥1(k∈N*),則ak+1=lnak+ak+2>1,故an≥1(n∈N*)
          從而an+1=lnan+an+2≤2an+1
          1+an+1≤2(1+an)≤…≤2n(1+a1)
          1+an2n,
          an2n-1
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)而得單調(diào)性與極值,考查分類(lèi)討論的數(shù)學(xué)思想,考查不等式的證明,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線(xiàn)l:y=kx-2與曲線(xiàn)y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對(duì)任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,求直線(xiàn)l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案