日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
          (1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
          (2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

          【答案】
          (1)解: 在[1,2]上恒成立,

          令h(x)=2x2+ax﹣1,

          ,


          (2)解:假設存在實數(shù)a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3, =

          當a≤0時,g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae﹣1=3, (舍去),

          ∴g(x)無最小值.

          時,g(x)在 上單調(diào)遞減,在 上單調(diào)遞增

          ,a=e2,滿足條件.

          時,g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae﹣1=3, (舍去),

          ∴f(x)無最小值.

          綜上,存在實數(shù)a=e2,使得當x∈(0,e]時g(x)有最小值3.


          【解析】(1)由函數(shù)f(x)在[1,2]上是減函數(shù)得 在[1,2]上恒成立,即有h(x)=2x2+ax﹣1≤0成立求解.(2)先假設存在實數(shù)a,求導得 = ,a在系數(shù)位置對它進行討論,結(jié)合x∈(0,e]分當a≤0時,當 時,當 時三種情況進行.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,設橢圓的中心為原點,長軸在軸上,上頂點為,左,右焦點分別為,線段的中點分別為,且 是面積為4的直角三角形.

          1)求該橢圓的離心率和標準方程;

          2)過做直線交橢圓于兩點,使,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.

          (1)求橢圓的方程;

          (2) 為橢圓上任意一點,若,求的最大值和最小值.

          (3)求的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)是R上的偶函數(shù),在(﹣3,﹣2)上為減函數(shù)且對x∈R都有f(2﹣x)=f(x),若A,B是鈍角三角形ABC的兩個銳角,則(
          A.f(sinA)<f(cosB)
          B.f(sinA)>f(cosB)
          C.f(sinA)=f(cosB)
          D.f(sinA)與與f(cosB)的大小關(guān)系不確定

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1

          (1)求f(0),f(2);

          (2)求函數(shù)f(x)的解析式;

          (3)若f(a-1)<3,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某個體經(jīng)營者把開始六個月試銷A、B兩種商品的逐月投資與所獲純利潤列成下表:

          投資A商品金額(萬元)

          1

          2

          3

          4

          5

          6

          獲純利潤(萬元)

          0.65

          1.39

          1.85

          2

          1.84

          1.40

          投資B商品金額(萬元)

          1

          2

          3

          4

          5

          6

          獲純利潤(萬元)

          0.25

          0.49

          0.76

          1

          1.26

          1.51

          該經(jīng)營者準備下月投入12萬元經(jīng)營這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算請你幫助制定一下資金投入方案,使得該經(jīng)營者能獲得最大利潤,并按你的方案求出該經(jīng)營者下月可獲得的最大利潤(結(jié)果保留兩個有效數(shù)字)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合A{x|x22x30},B{x|x22mxm240,xR,mR}

          (1)AB[0,3],求實數(shù)m的值;

          (2)ARB,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).

          (1)求函數(shù)f(x)的定義域;

          (2)判斷函數(shù)f(x)的奇偶性并給出證明;

          (3)若x時,函數(shù)f(x)的值域是[0,1],求實數(shù)a的值.

          查看答案和解析>>

          同步練習冊答案