日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,a1=a,an+1=,n=1,2,3,….

          (1)若對于n∈N*,均有an+1=an成立,求a的值;

          (2)若對于n∈N*,均有an+1>an成立,求a的取值范圍;

          (3)請你構(gòu)造一個無窮數(shù)列{bn},使其滿足下列兩個條件,并加以證明:

          ①bn<bn+1,n=1,2,3,…;

          ②當(dāng)a為{bn}中的任意一項時,{an}中必有某一項的值為1.

          解:(1)依題意,an+1=an=a,n=1,2,3,….

          所以a=,解得a=2或a=3,符合題意.

          (2)解不等式an+1>an,即>an,得an<0或2<an<3.

          所以,要使a2>a1成立,則a1<0或2<a1<3.

          ①當(dāng)a1<0時,a2=f(a1)==5>5,

          而a3-a2=f(a2)-a2=-a2

          =<0,

          即a3<a2,不滿足題意.

          ②當(dāng)2<a1<3時,a2=f(a1)==5∈(2,3),a3=5∈(2,3),…,滿足題意.

          綜上,a∈(2,3).

          (3)構(gòu)造數(shù)列{bn}:b1=,bn+1=(n∈N*),

          那么bn=5.不妨設(shè)a取bn,

          那么a2=5=5=bn-1,

          a3=5=5=bn-2,

          …,

          an=5=5=b1=,

          an+1=5=5=1.

          由b1=<2,可得bn=<2(n>1,n∈N*).

          因為bn+1-bn=-bn=>0,

          所以bn<bn+1,n=1,2,3,….

          又bn<2≠5,所以數(shù)列{bn}是無窮數(shù)列,因此構(gòu)造的數(shù)列{bn}符合題意.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          6、在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a1=1,an+1=an+2n-1,則an的表達式為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a1=1,an+1=an+
          1
          n(n+1)
          ,n∈N*,則an=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的個位數(shù),則a2013的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-ax+a,(a≠0x∈R),有且僅有唯一的實數(shù)x滿足f(x)≤0.
          (1)在數(shù)列{an}中,滿足Sn=f(n)-4,求{an}的通項;
          (2)在數(shù)列{an}中依次取出第1項、第2項、第4項、…第2n-1項…組成新數(shù)列{bn},求新數(shù)列的前n項和Tn;
          (3)設(shè)cn=
          nanan+1
          ,求數(shù)列{cn}的最大和最小值.

          查看答案和解析>>

          同步練習(xí)冊答案