日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標系xOy中,拋物線C:x2=2py(p>0)的焦點為F,過F的直線l交C于A,B兩點,交x軸于點D,B到x軸的距離比|BF|小1.
          (Ⅰ)求C的方程;
          (Ⅱ)若SBOF=SAOD , 求l的方程.

          【答案】解:(Ⅰ)解法一:拋物線C:x2=2py(p>0)的焦點為F(0, ),C的準線方程為 , 由拋物線的定義,可知|BF|等于點B到C的準線的距離.
          又因為點B到x軸的距離比|BF|小1,
          所以點B到x軸的距離比點B到拋物線準線的距離小1,
          ,解得p=2,
          所以C的方程為x2=4y.
          解法二:C的焦點為 ,
          代入x2=2py,得x=p或x=﹣p,故 ,
          因為點B到x軸的距離比|BF|小1, ,即 ,
          解得p=2,所以C的方程為x2=4y,
          經(jīng)檢驗,拋物線的方程x2=4y滿足題意.
          (Ⅱ)由(Ⅰ)得C的焦點為F(0,1),設(shè)直線l的方程為y=kx+1(k≠0),A(x1 , y1),B(x2 , y2).則
          聯(lián)立方程組 消去y,得x2﹣4kx﹣4=0.
          △=(﹣4k)2﹣4×1×(﹣4)=16k2+16>0,
          由韋達定理,得x1+x2=4k,x1x2=﹣4.
          設(shè)點O到直線l的距離為d,則 ,
          又SBOF=SAOD , 所以|BF|=|AD|.
          又A,B,D,F(xiàn)在同一直線上,所以 ,即 ,
          因為
          所以 ,整理,得16k4+16k2﹣1=0,
          ,解得 ,
          所以l的方程為
          【解析】(Ⅰ)解法一:由拋物線的焦半徑公式,點B到x軸的距離比點B到拋物線準線的距離小1, ,即可求得p的值,求得拋物線方程; 解法二:將 代入x2=2py,得x=p或x=﹣p,故 ,由點B到x軸的距離比|BF|小1, ,即 ,即可求得p的值,求得拋物線方程;(Ⅱ)設(shè)直線l的方程,代入拋物線方程,由SBOF=SAOD , 則|BF|=|AD|.利用韋達定理可得: ,即 ,則兩邊平方,即可求得k的值,求得直線l的方程.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線:,已知過點的直線的參數(shù)方程為: (為參數(shù)),直線與曲線分別交于兩點.

          (1)寫出曲線和直線的普通方程;

          (2)若,,成等比數(shù)列,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面,,,,點

          (1)求證:平面;

          (2)當平面時,求的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線PA,PB分別與半徑為1的圓O相切于點A,B,PO=2, .若點M在圓O的內(nèi)部(不包括邊界),則實數(shù)λ的取值范圍是(
          A.(﹣1,1)
          B.
          C.
          D.(0,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,下列四個命題中不正確的命題是( )

          A.,則△ABC一定是等邊三角形

          B.,則△ABC一定是銳角三角形

          C.,則△ABC一定是等腰三角形

          D.,則△ABC一定是等腰三角形或直角三角形

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù));在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρcos2θ=sinθ.
          (Ⅰ)求C1的普通方程和C2的直角坐標方程;
          (Ⅱ)若射線l:y=kx(x≥0)分別交C1 , C2于A,B兩點(A,B異于原點).當 時,求|OA||OB|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.

          求甲在4局以內(nèi)(含4局)贏得比賽的概率;

          為比賽決出勝負時的總局數(shù),求的分布列和均值(數(shù)學(xué)期望).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求證:對任何a>0,b>0,c>0,都

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某零售店近5個月的銷售額和利潤額資料如下表:

          商店名稱

          銷售額/千萬元

          3

          5

          6

          7

          9

          利潤額/百萬元

          2

          3

          3

          4

          5

          (1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;

          (2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;

          (3)當銷售額為4千萬元時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).

          [參考公式:]

          查看答案和解析>>

          同步練習(xí)冊答案