日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系xoy中,拋物線y2=2px(p>0)的準(zhǔn)線l與x軸交于點(diǎn)M,過點(diǎn)M的直線與拋物線交于A,B兩點(diǎn),設(shè)A(x1 , y1)到準(zhǔn)線l的距離d=2λp(λ>0)

          (1)若y1=d=3,求拋物線的標(biāo)準(zhǔn)方程;
          (2)若 = ,求證:直線AB的斜率的平方為定值.

          【答案】
          (1)解:拋物線y2=2px的焦點(diǎn)F( ,0),準(zhǔn)線方程為x=﹣

          則|AF|=y1,可得AF⊥x軸,

          則x1= ,即有d= + =3,即p=3,

          則拋物線的方程為y2=6x;


          (2)證明:設(shè)B(x2,y2),AB:y=k(x+ ),代入拋物線的方程,可得

          k2x2+p(k2﹣2)x+ =0,

          由△=p2(k2﹣2)2﹣k4p2>0,即為k2<1,

          x1= ,x2= ,

          由d=2λp,可得x1+ =2λp,

          = ,M(﹣ ,0),

          可得x1+ =λ(x2﹣x1),

          即有2p=x2﹣x1= ,

          解得k2=

          故直線AB的斜率的平方為定值.


          【解析】(1)求得拋物線的焦點(diǎn)和準(zhǔn)線方程,由題意可得AF⊥x軸,即有p=3,進(jìn)而得到拋物線的方程;(2)設(shè)B(x2 , y2),AB:y=k(x+ ),代入拋物線的方程,可得x的方程,運(yùn)用判別式大于0和求根公式,運(yùn)用向量共線的坐標(biāo)表示,可得2p=x2﹣x1 , 解方程即可得到所求定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

          (1)求證:AA1⊥平面ABC;

          (2)求二面角A1-BC1-B1的余弦值;

          (3)求點(diǎn)C到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若,求的單調(diào)區(qū)間;

          2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某海濱浴場海浪的高度y()是時(shí)間t(0≤t≤24,單位:時(shí))的函數(shù),記作:.下表是某日各時(shí)的浪高數(shù)據(jù).

          t(時(shí))

          0

          3

          6

          9

          12

          15

          18

          21

          24

          y()

          1.5

          1.0

          0.5

          1.0

          1.5

          1.0

          0.5

          0.99

          1.5

          (1)根據(jù)以上數(shù)據(jù),求函數(shù)yf(t)的函數(shù)表達(dá)式;

          (2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00時(shí)至晚上20:00時(shí)之間,有多少時(shí)間可供沖浪者進(jìn)行運(yùn)動?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)在研究函數(shù)(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:

          ①函數(shù)f(x)是奇函數(shù);②函數(shù)f(x)的值域?yàn)椋?1,1);③函數(shù)f(x)在R上是增函數(shù);其中正確結(jié)論的序號是

          A. ①② B. ①③ C. ②③ D. ①②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會超過600.

          1設(shè)一次訂購件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;

          2當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤最大?其最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為2的正方形,,分別為,的中點(diǎn),的中點(diǎn),沿,,將正方形折起,使,重合于點(diǎn),在構(gòu)成的三棱錐下列結(jié)論錯(cuò)誤的是

          A. 平面

          B. 三棱錐的體積為

          C. 直線與平面所成角的正切值為

          D. 異面直線所成角的余弦值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足 ,且a1=3.
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,拋物線的焦點(diǎn)為.

          (1)若過點(diǎn)的直線與拋物線有且只有一個(gè)交點(diǎn),求直線的方程;

          (2)若直線與拋物線交于兩點(diǎn),求的面積.

          查看答案和解析>>

          同步練習(xí)冊答案