日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C過點(diǎn),兩焦點(diǎn)為,是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線與該橢圓交于兩個不同點(diǎn)、,且直線、、的斜率依次成等比數(shù)列.
          (1)求橢圓C的方程;       
          (2)求直線的斜率
          (3)求面積的范圍.

          (1),(2)(3).

          解析試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,通常利用待定系數(shù)法求解,即只需兩個獨(dú)立條件解出a,b即可. 由,解得所以橢圓的方程為.(2)涉及斜率問題,通常轉(zhuǎn)化為對應(yīng)坐標(biāo)的運(yùn)算. 由消去得:,,,因?yàn)橹本的斜率依次成等比數(shù)列,所以,故(3)解幾中面積問題,通常轉(zhuǎn)化為點(diǎn)到直線距離. 所以的取值范圍為.
          [解] (1)由題意得,可設(shè)橢圓方程為     2分
          ,解得所以橢圓的方程為.  4分                            
          (2)消去得:    6分

               
                   8分
          因?yàn)橹本的斜率依次成等比數(shù)列
          所以
          ,由于      10分
          (3)因?yàn)橹本的斜率存在且不為,及.  12分
          設(shè)為點(diǎn)到直線的距離,則

                          14分
          <,所以的取值范圍為.       16分
          考點(diǎn):橢圓方程,直線與橢圓位置關(guān)系

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓過點(diǎn),兩個焦點(diǎn)為.
          (1)求橢圓的方程;
          (2),是橢圓上的兩個動點(diǎn),如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對稱點(diǎn)在拋物線上.
          (1)求拋物線的方程;
          (2)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動點(diǎn),求的最小值及此時點(diǎn)的坐標(biāo);
          (3)設(shè)點(diǎn)、是拋物線上的動點(diǎn),點(diǎn)是拋物線與軸正半軸交點(diǎn),是以為直角頂點(diǎn)的直角三角形.試探究直線是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線上有一點(diǎn)到焦點(diǎn)的距離為.
          (1)求的值.
          (2)如圖,設(shè)直線與拋物線交于兩點(diǎn),且,過弦的中點(diǎn)作垂直于軸的直線與拋物線交于點(diǎn),連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (已知拋物線)的準(zhǔn)線與軸交于點(diǎn)
          (1)求拋物線的方程,并寫出焦點(diǎn)坐標(biāo);
          (2)是否存在過焦點(diǎn)的直線(直線與拋物線交于點(diǎn),),使得三角形的面積?若存在,請求出直線的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓過點(diǎn)和點(diǎn)
          (1)求橢圓的方程;
          (2)設(shè)過點(diǎn)的直線與橢圓交于兩點(diǎn),且,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C:.
          (1)求橢圓C的離心率;
          (2)設(shè)O為原點(diǎn),若點(diǎn)A在直線,點(diǎn)B在橢圓C上,且,求線段AB長度的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (2011•浙江)已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點(diǎn)M
          (1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
          (2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知動點(diǎn)M(x,y)到直線l:x = 4的距離是它到點(diǎn)N(1,0)的距離的2倍.
          (1)求動點(diǎn)M的軌跡C的方程;
          (2)過點(diǎn)P(0,3)的直線m與軌跡C交于A, B兩點(diǎn). 若A是PB的中點(diǎn), 求直線m的斜率.

          查看答案和解析>>

          同步練習(xí)冊答案