日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)

          已知函數(shù),,記

          (Ⅰ)求的單調(diào)區(qū)間;

          (Ⅱ)當(dāng)時(shí),若,比較:的大。

          (Ⅲ)若的極值為,問是否存在實(shí)數(shù),使方程

          有四個(gè)不同實(shí)數(shù)根?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由。

           

           

           

           

           

          解:(Ⅰ)的定義域?yàn)椋?,+∞), 又

           , 當(dāng)時(shí),>0恒成立

          在(0,+∞)上單調(diào)遞增;   令

          當(dāng)時(shí),若,在(0,)上單調(diào)遞減;

          ,,∴在(,+∞)上單調(diào)遞增    

          時(shí),增區(qū)間為;

          時(shí),增區(qū)間為,減區(qū)間為(0,)。      ……4分

          (Ⅱ)令,

          ,所以在[1,+∞)

          上單調(diào)遞增,∴,∴                 ……8分

          (Ⅲ)由(Ⅰ)知僅當(dāng)時(shí),在處取得極值

          可得=2,方程

          ...,   令,得...

           由方程有四個(gè)不同的根,得方程有兩個(gè)不同的正根,

          ,當(dāng)直線與曲線相切時(shí),,得切點(diǎn)坐標(biāo)(3,) ∴切線方程為,其在y軸上截距為;當(dāng)直線軸上截距時(shí),在y軸右側(cè)有兩個(gè)不同交點(diǎn),所以k的取值范圍為(,0)             ……14分

           (注:也可用導(dǎo)數(shù)求解)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分
          A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
          π
          3
          (ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
          B.選修4-5:不等式選講
          設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

          (1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

          (Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

          (Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

          (本題滿分14分)

          已知點(diǎn)是⊙上的任意一點(diǎn),過垂直軸于,動(dòng)點(diǎn)滿足。

          (1)求動(dòng)點(diǎn)的軌跡方程; 

          (2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使

          ;如果沒有,請說明理由?(注:區(qū)間的長度為).

           

          查看答案和解析>>

          同步練習(xí)冊答案