日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1

           

          F2,直線過(guò)橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長(zhǎng)為

          (1)求橢圓C的方程;

          (2)設(shè)橢圓C經(jīng)過(guò)伸縮變換變成曲線,直線與曲線相切

           

          且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

           

          【答案】

          (1)依題意軸交于點(diǎn)F2(1,0)即     (1分)

          所以

           所以橢圓C的方程為   (4分)

          (2)依題意曲線的方程為即圓   (5分)

          因?yàn)橹本與曲線相切,

          所以,即         (6分)

          設(shè)  所以,所以           (7分)

          所以     (8分)

          所以

          ,             所以   (9分)

          所以    又,       所以,

          所以   (10分)

          設(shè)    因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209380195315571/SYS201205220939334687804725_DA.files/image031.png">,所以

             在上為遞增函數(shù),

          所以   又O到AB的距離為1,

          所以

          的面積的取值范圍為    (14分)

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿分14分)

          設(shè)函數(shù),。

          (1)若,過(guò)兩點(diǎn)的中點(diǎn)作軸的垂線交曲線于點(diǎn),求證:曲線在點(diǎn)處的切線過(guò)點(diǎn);

          (2)若,當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時(shí),用數(shù)學(xué)歸納法證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

          (本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
          F2,直線過(guò)橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長(zhǎng)為。
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C經(jīng)過(guò)伸縮變換變成曲線,直線與曲線相切
          且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

          (本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

           (I)證明:函數(shù)是集合M中的元素;

           (II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。 

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

          本題滿分14分)

          設(shè)函數(shù).

          (1)若,求函數(shù)的極值;

          (2)若,試確定的單調(diào)性;

          (3)記,且上的最大值為M,證明:

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案