日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  設1+(1+x)2+(1+2x)2+(1+3x)2+…+(1+nx)2=a0+a1x+a2x2,則的值是

          A.0           B.            C.1                D.2

           

          【答案】

           C  

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設1+(1+x)2+(1+2x)2+(1+3x)2+…+(1+nx)2=a0+a1x+a2x2,則a0+a1=(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當x∈[-1,0]時f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
          ④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
          其中真命題的個數(shù)為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          定義:設P、Q分別為曲線C1和C2上的點,把P、Q兩點距離的最小值稱為曲線C1到C2的距離.
          (1)求曲線C:y=x2到直線l:2x-y-4=0的距離;
          (2)若曲線C:(x-a)2+y2=1到直線l:y=x-1的距離為3,求實數(shù)a的值;
          (3)求圓O:x2+y2=1到曲線y=
          2x-3x-2
          (x>2)
          的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源:徐州模擬 題型:解答題

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案