日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=(1+x)m+(1+x)n,(m,n∈N*且m≥2,n≥2)的展開式中x項(xiàng)系數(shù)為18,則f(x)中含x2項(xiàng)系數(shù)的最小值是
          72
          72
          分析:利用二項(xiàng)式定理求出展開式中x項(xiàng)系數(shù)為m+n=18,含x2項(xiàng)系數(shù)
          m2-m+n2-n
          2
          ,再利用基本不等式求出其最小值即可.
          解答:解:f(x)=1+Cm1x+Cm2x2+…Cmmxm+1+Cn1x+Cn2x2+…+Cnnxn
          =2+(m+n)x+
          m2-m+n2-n
          2
          x2+…
          由已知,m+n=18,
          由m2+n2≥2mn,得2m2+2n2≥m2+n2+2mn=(m+n)2=324,
          于是 m2+n2≥162.
          所以含x2項(xiàng)系數(shù)
          m2-m+n2-n
          2
          =
          m2+n2-18
          2
          162-18
          2
          =72

          故答案為:72.
          點(diǎn)評(píng):本題考查二項(xiàng)式定理,基本不等式求最值.考查計(jì)算、配湊轉(zhuǎn)化的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
          (Ⅰ)設(shè)函數(shù)F(x)=f(x)-g(x),判斷函數(shù)F(x)的奇偶性并證明;
          (Ⅱ)若關(guān)于x的方程g(m+2x-x2)=f(x)有實(shí)數(shù)根,求實(shí)數(shù)m的范圍;
          (Ⅲ)當(dāng)a>1時(shí),不等式f(n-x)>
          12
          g(x)對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)n的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0)時(shí),f(x)=(
          2
          2
          )
          x
          -1,若在區(qū)間(-2,6)內(nèi)的關(guān)于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•韶關(guān)二模)定義符號(hào)函數(shù)sgnx=
          1,x>0
          0,x=0
          -1,x<0
          ,設(shè)f(x)=
          sgn(
          1
          2
          -x)+1
          2
          f1(x)+
          sgn(x-
          1
          2
          )+1
          2
          •f2(x),x∈[0,1],其中f1(x)=x+
          1
          2
          ,f2(x)=2(1-x),若f[f(a)]∈[0,
          1
          2
          )
          ,則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案