日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時, 點(diǎn)在軸上的射影為。連結(jié)并延長分別交、兩點(diǎn),連接; 的面積分別記為, ,設(shè).

          )求橢圓和拋物線的方程;

          )求的取值范圍.

          【答案】(1) ,;(2) .

          【解析】試題分析: )由題意得得,根據(jù)點(diǎn)M在拋物線上得,又由,得 ,可得,解得,從而得,可得曲線方程。 )設(shè) ,分析可得,先設(shè)出直線的方程為 ,解得,從而可求得,同理可得,故可將化為m的代數(shù)式,用基本不等式求解可得結(jié)果。

          試題解析

          )由拋物線定義可得,

          ∵點(diǎn)M在拋物線上,

          ,即

          又由,得

          將上式代入,得

          解得

          所以曲線的方程為曲線的方程為。

          )設(shè)直線的方程為,

          消去y整理得,

          設(shè) .

          ,

          設(shè),

          ,

          所以

          設(shè)直線的方程為 ,

          ,解得,

          所以

          可知,用代替

          可得,

          ,解得,

          所以,

          代替,可得

          所以

          ,當(dāng)且僅當(dāng)時等號成立。

          所以的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四邊形為等腰梯形,為正方形,平面平面,,.

          (1)求證:平面平面;

          (2)點(diǎn)為線段上一動點(diǎn),求與平面所成角正弦值的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐OABCD的底面是邊長為1的菱形,OA2,∠ABC60°,OA⊥平面ABCD,MN分別是OA、BC的中點(diǎn).

          1)求證:直線MN∥平面OCD;

          2)求點(diǎn)M到平面OCD的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,過橢圓的焦點(diǎn)且垂直于軸的直線被橢圓截得的弦長為

          1)求橢圓的方程;

          2)設(shè)點(diǎn)均在橢圓上,點(diǎn)在拋物線上,若的重心為坐標(biāo)原點(diǎn),且的面積為,求點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcosθ=4,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,以極點(diǎn)為坐標(biāo)原點(diǎn)O,極軸為x軸的正半軸建立直角坐標(biāo)系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點(diǎn).

          Ⅰ)寫出直線l的直角坐標(biāo)方程以及曲線C的參數(shù)方程;

          Ⅱ)若射線l與直線l交于點(diǎn)N,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司人數(shù)眾多為鼓勵員工利用網(wǎng)絡(luò)進(jìn)行營銷,準(zhǔn)備為員工辦理手機(jī)流量套餐.為了解員工手機(jī)流量使用情況,按照男員工和女員工的比例分層抽樣,得到名員工的月使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如圖所示.

          1)求的值,并估計(jì)這名員工月使用流量的平均值(同一組中的數(shù)據(jù)用中點(diǎn)值代表;

          2)若將月使用流量在以上(含)的員工稱為“手機(jī)營銷達(dá)人”,填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“成為手機(jī)營銷達(dá)人與員工的性別有關(guān)”;

          男員工

          女員工

          合計(jì)

          手機(jī)營銷達(dá)人

          5

          非手機(jī)營銷達(dá)人

          合計(jì)

          200/span>

          參考公式及數(shù)據(jù):,其中.

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          3)若這名員工中有名男員工每月使用流量在,從每月使用流量在的員工中隨機(jī)抽取名進(jìn)行問卷調(diào)查,記女員工的人數(shù)為,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)(

          A.甲的直觀想象素養(yǎng)高于乙

          B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)

          C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣

          D.乙的六大素養(yǎng)整體水平低于甲

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標(biāo)準(zhǔn),BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI28時為肥胖.某地區(qū)隨機(jī)調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

          1)求被調(diào)查者中肥胖人群的BMI平均值;

          2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          肥胖

          不肥胖

          合計(jì)

          高血壓

          非高血壓

          合計(jì)

          附:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方體的棱長為1,線段上有兩個動點(diǎn),且,現(xiàn)有如下四個結(jié)論:

          ;平面;

          三棱錐的體積為定值;異面直線所成的角為定值,

          其中正確結(jié)論的序號是______

          查看答案和解析>>

          同步練習(xí)冊答案