日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果都做,則按所做的第一題評(píng)分)
          A.已知點(diǎn)P(x,y)在曲線 
          x=-2+cosθ
          y=sinθ
          (θ為參數(shù))上,則
          y
          x
          的取值范圍為
           

          B.關(guān)于x的不等式|a-2x|>x-2在[0,2]上恒成立,則a的取值范圍為
           
          分析:A 曲線即 (x-2)2+y2=1,表示以C(2,0)為圓心,以1為半徑的圓,
          y
          x
          表示圓上的點(diǎn)與原點(diǎn)連線的斜率,由r=1=
          |2k-0|
          k2+1
          ,可得 k 的值,由此求得
          y
          x
          的取值范圍.
          B  由于x-2在[0,2]上小于或等于0,故應(yīng)有|a-2x|在[0,2]上恒正,2x≠a,故
          a
          2
          <0,或
          a
          2
          >2,由此求得a的取值范圍.
          解答:解:A 曲線 
          x=-2+cosθ
          y=sinθ
          (θ為參數(shù))即 (x-2)2+y2=1,表示以C(2,0)為圓心,以1為半徑的圓.
          y
          x
          表示圓上的點(diǎn)與原點(diǎn)連線的斜率,如圖所示,設(shè)切線的斜率為k,則切線的方程為y=kx,
          由r=1=
          |2k-0|
          k2+1
          ,可得 k=±
          3
          3
          ,故
          y
          x
          的取值范圍為  [-
          3
          3
          ,
          3
          3
          ]
           
          故答案為:[-
          3
          3
          ,
          3
          3
          ]

          精英家教網(wǎng)
          B 關(guān)于x的不等式|a-2x|>x-2在[0,2]上恒成立,由于x-2在[0,2]小于或等于0,
          故應(yīng)有|a-2x|恒正,∴2x≠a,即 x≠
          a
          2
          ,∴
          a
          2
          <0,或
          a
          2
          >2,
          ∴a<0,或a>4,則a的取值范圍為 (-∞,0)∪(4,+∞),
          故答案為:(-∞,0)∪(4,+∞).
          點(diǎn)評(píng):本題考查斜率公式,圓的切線性質(zhì),參數(shù)方程與普通方程之間的轉(zhuǎn)化,圓的參數(shù)方程,絕對(duì)值不等式的解法,得到
          a
          2
          <0,或
          a
          2
          >2,是解題的難點(diǎn)和關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
          (1)(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)系中,P,Q是曲線C:ρ=4sinθ上任意兩點(diǎn),則線段PQ長(zhǎng)度的最大值為
          4
          4

          (2)如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
          7
          ,AB=BC=3,則AC的長(zhǎng)為
          3
          7
          2
          3
          7
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•上饒一模)請(qǐng)?jiān)谙铝袃深}中任選一題作答,(如果兩題都做,則按所做的第一題評(píng)分)
          (A)曲線C1的極坐標(biāo)方程為ρsin2θ=cosθ,曲線C2的參數(shù)方程為
          x=3-t
          y+t=1
          ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則曲線C1與曲線C2
          2
          2
          個(gè)公共點(diǎn).
          (B)關(guān)于x的不等式:|x-1|-|x-2|≤a的解集不是空集,則實(shí)數(shù)a的范圍為
          a≥-1
          a≥-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•黃州區(qū)模擬)(考生注意:本題為選做題,請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果都做,則按所做第(1)題計(jì)分)
          (1)(《坐標(biāo)系與參數(shù)方程選講》選做題).已知曲線C的極坐標(biāo)方程為ρ=2cosθ,則曲線C上的點(diǎn)到直線
          x=-1+t
          y=2t
          (t為參數(shù))距離的最大值為
          1+
          4
          5
          5
          1+
          4
          5
          5


          (2)(《幾何證明選講》選做題).已知點(diǎn)C在圓O的直徑BE的延長(zhǎng)線上,直線CA與圓O相切于點(diǎn)A,∠ACB的平分線分別交AB,AE于點(diǎn)D,F(xiàn),則∠ADF
          45°
          45°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•江西模擬)(考生注意:請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果多做則按所做的第一題評(píng)分)
          A(坐標(biāo)系與參數(shù)方程選做題) 已知圓ρ=3cosθ,則圓截直線
          x=2+2t
          y=1+4t
          (t是參數(shù))所得的弦長(zhǎng)為
          3
          3

          B(不等式選做題) 若關(guān)于x的不等式|x|+|x-1|≤a有解,則實(shí)數(shù)a的取值范圍是
          [1,+∞)
          [1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (考生注意:請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果多做則按所做的第一題評(píng)分)
          (A)在極坐標(biāo)系中,過(guò)點(diǎn)(2
          2
          ,
          π
          4
          )作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程為
          ρcosθ=2
          ρcosθ=2

          (B)已知方程|2x-1|-|2x+1|=a+1有實(shí)數(shù)解,則a的取值范圍為
          [-3,-1]
          [-3,-1]

          查看答案和解析>>

          同步練習(xí)冊(cè)答案