日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:在正三棱柱ABC-A1 B1 C1中,AB=數(shù)學(xué)公式=a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
          (Ⅰ)求證:面AEF⊥面ACF;
          (Ⅱ)求三棱錐A1-AEF的體積.

          解:(Ⅰ)∵BE:CF=1:2
          ∴DC=2BD,∴DB=BC,
          ∵△ABD是等腰三角形,
          且∠ABD=120°,∴∠BAD=30°,
          ∴∠CAD=90°,
          ∵FC⊥面ACD,
          ∴CA是FA在面ACD上射影,
          且CA⊥AD,∵FA∩AC=A,
          DA⊥面ACF,DA?面ADF
          ∴面ADF⊥面ACF.
          (Ⅱ)解:∵
          在面A1B1C1內(nèi)作B1G⊥A1C1,垂足為G.
          B1G=
          面A1B1C1⊥面A1C
          ∵B1G⊥面A1C,
          ∵E∈BB1,而BB1∥面A1C,
          ∴三棱柱E-AA1F的高為B1G=
          =AA1=

          分析:(Ⅰ)欲證面ADF⊥面ACF,根據(jù)面面垂直的判定定理可知在平面ADF內(nèi)一直線與平面ACF垂直,根據(jù)題意易證CA⊥AD,而FC⊥面ACD,則CA是FA在面ACD上射影,F(xiàn)A∩AC=A,滿足線面垂直的判定定理,則DA⊥面ACF,而DA?面ADF,滿足面面垂直的判定定理.
          (Ⅱ)先根據(jù)將所求的體積進(jìn)行轉(zhuǎn)化,在面A1B1C1內(nèi)作B1G⊥A1C1,垂足為G,求出B1G,然后利用體積公式進(jìn)行求解即可.
          點(diǎn)評(píng):本小題考查空間線面關(guān)系,正三棱柱的性質(zhì),邏輯思維能力,空間想象能力運(yùn)算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小為60°,則點(diǎn)C到平面C1AB的距離為( 。
          A、
          3
          4
          B、
          1
          2
          C、
          3
          2
          D、1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD與平面AA1CC1所成的角為a,則sina=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,D、E、G分別是AB、BB1、AC1的中點(diǎn),AB=BB1=2.
          (Ⅰ)在棱B1C1上是否存在點(diǎn)F使GF∥DE?如果存在,試確定它的位置;如果不存在,請說明理由;
          (Ⅱ)求截面DEG與底面ABC所成銳二面角的正切值;
          (Ⅲ)求B1到截面DEG的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中點(diǎn),點(diǎn)N在AA1上,AN=
          14

          (Ⅰ)求BC1與側(cè)面ACC1A1所成角的大。
          (Ⅱ)求二面角C1-BM-C的正切值;
          (Ⅲ)證明MN⊥BC1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•馬鞍山二模)如圖,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延長線上一點(diǎn),過A、B、P三點(diǎn)的平面交FD于M,交EF于N.
          (I)求證:MN∥平面CDE:
          (II)當(dāng)平面PAB⊥平面CDE時(shí),求三梭臺(tái)MNF-ABC的體積.

          查看答案和解析>>

          同步練習(xí)冊答案