日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•金華模擬)己知等差數(shù)列{an},公差d>0,前n項(xiàng)和為Sn,且滿足a2a3=45,a1+a4=14.
          (I)求數(shù)列{an}的通項(xiàng)公式及前,n項(xiàng)和Sn
          (II)設(shè)bn=
          Sn
          n+c
          ,若數(shù)列{bn}也是等差數(shù)列,試確定非零常數(shù)c;并求數(shù)列{
          1
          bnbn+1
          }
          的前n項(xiàng)和Tn
          分析:(Ⅰ)由等差數(shù)列{an}的性質(zhì)可得a2+a3=a1+a4=14,進(jìn)而解得a2,a3,即可得到a1,d,利用通項(xiàng)公式和前n項(xiàng)和公式即可得出;
          (Ⅱ)由數(shù)列{bn}是等差數(shù)列,則2b2=b1+b3,得出c,從而得出bn,再利用裂項(xiàng)求和即可得出Tn
          解答:解:(Ⅰ)由等差數(shù)列{an}的性質(zhì)可得a2+a3=a1+a4=14,又a2a3=45.
          a2a3=45
          a2+a3=14
          ,解得
          a2=5
          a3=9
          a2=9
          a3=5
          ,
          ∵d>0,∴
          a2=9
          a3=5
          應(yīng)舍去,
          因此
          a2=5
          a3=9

          ∴d=a3-a2=4,a1=a2-d=5-4=1,
          ∴an=1+(n-1)×4=4n-3,
          Sn=n+
          n(n-1)
          2
          ×4
          =2n2-n.
          (Ⅱ)由(Ⅰ)可得bn=
          2n2-n
          n+c
          ,
          ∵數(shù)列{bn}是等差數(shù)列,則2b2=b1+b3,即
          6
          2+c
          =
          1
          1+c
          +
          15
          3+c

          解得c=-
          1
          2

          ∴bn=2n.
          1
          bnbn+1
          =
          1
          2n•2(n+1)
          =
          1
          4
          (
          1
          n
          -
          1
          n+1
          )

          ∴Tn=
          1
          4
          [(1-
          1
          2
          )+(
          1
          2
          -
          1
          3
          )+…+(
          1
          n
          -
          1
          n+1
          )]

          =
          1
          4
          (1-
          1
          n+1
          )

          =
          n
          4(n+1)
          點(diǎn)評(píng):熟練掌握等差數(shù)列的性質(zhì)、通項(xiàng)公式和前n項(xiàng)和公式、裂項(xiàng)求和是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•金華模擬)△ABC中,點(diǎn)P滿足
          AP
          =t(
          AB
          +
          AC
          ),
          BP
          AP
          =
          CP
          AP
          ,則△ABC一定是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•金華模擬)已知拋物線y2=4px(p>0)與雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的交點(diǎn),且AF⊥x軸,則雙曲線的離心率為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•金華模擬)已知200輛汽車通過(guò)某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[60,70]的汽車大約有
          80
          80
          輛.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•金華模擬)已知a>0,b>0,a、b的等比中項(xiàng)是1,且m=b+
          1
          a
          ,n=a+
          1
          b
          ,則m+n的最小值是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案