分析:(I)若a=0,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求f(x)的單調(diào)區(qū)間;
(II)利用導(dǎo)數(shù)分別討論a的取值,進(jìn)而討論函數(shù)f(x)在區(qū)間
(,+∞)上的極值點(diǎn)個(gè)數(shù);
(III)假設(shè)存在a,使得f(x)在區(qū)間(
,+∞)上與x軸相切,則f(x)必與x軸相切于極值點(diǎn)處,利用導(dǎo)數(shù)與極值之間的關(guān)系進(jìn)行討論.
解答:解:(1)當(dāng)a=0時(shí):f(x)=(xlnx+-1)e
x,(x>0)
故f'(x)=(lnx+1+xlnx-1)e
x=lnx(x+1)e
x,
當(dāng)x=1時(shí):f'(x)=0,當(dāng)x>1時(shí):f'(x)>0,當(dāng)x<1時(shí):f'(x)<0.
故f(x)的減區(qū)間為:(0,1),增區(qū)間為(1,+∞).
(2)f'(x)=(lnx+xlnx+ax+a
2)e
x,
令g(x)=lnx+xlnx+ax+a
2,
故g'(x)=
+lnx+1+a,g“(x)=-
+,
顯g''(1)=0,又當(dāng)x<1時(shí):g''(x)<0.當(dāng)x>1時(shí):g''(x)>0.
故g'(x)
min=g'(1)=2+a,
∵a≥-2,∴g'(x)≥g'(x)
min=2+a≥0.
故g(x)在區(qū)間(
,+∞)上單調(diào)遞增,
注意到:當(dāng)x→+∞時(shí),g(x)→+∞,
故g(x)在(
,+∞)上的零點(diǎn)個(gè)數(shù)由g(
)=(a-1)(a+1+
)的符號(hào)決定.
①當(dāng)g(
)≥0,即:-2
≤a≤-1-或a≥1時(shí):g(x)在區(qū)間(
,+∞)上無(wú)零點(diǎn),
即f(x)無(wú)極值點(diǎn).
②當(dāng)g(
)<0,即:-1-
<a<1時(shí):g(x)在區(qū)間(
,+∞)上有唯一零點(diǎn),
即f(x)有唯一極值點(diǎn).
綜上:當(dāng)2
≤a≤-1-或a≥1時(shí):f(x)在(
,+∞)上無(wú)極值點(diǎn).
當(dāng):-1-
<a<1時(shí):f(x)在(
,+∞)上有唯一極值點(diǎn).
(3)假設(shè)存在a,使得f(x)在區(qū)間(
,+∞)上與x軸相切,則f(x)必與x軸相切于極值點(diǎn)處,
由(2)可知:-1-
<a<1時(shí).不妨設(shè)極值點(diǎn)為x
0,則有:
| f′(x0)=(lnx0+x0lnx0+ax0+a2)ex0=0 | f(x0)=(x0lnx0+ax0+a2-a-1)ex0=0 |
| |
…(*)同時(shí)成立.
聯(lián)立得:lnx
0+a+1=0,即x
0=e-(a+1)代入(*)可得e
-(a+1)+(a+1)-a
2=0.
令t=-(a+1),則t
∈(-2,),h(t)=e
t-t-(t+1)
2,
則h'(t)=e
t-2t-3,h''(t)=e
t-2,當(dāng) t
∈(-2,)時(shí),
h″(t)<h″()=e-2<0(∵
e<e<2).故h'(t)在t
∈(-2,)上單調(diào)遞減.
又h'(-2)=e
-2+1>0,h'(
)=
e--3<0.故h'(t)在t
∈(-2,)上存在唯一零點(diǎn)t
0.
即當(dāng)t∈(-2,t
0)時(shí),h'(t)>0,h(t)單調(diào)遞增.當(dāng)t
∈(t0,)時(shí),h'(t)<0,h(t)單調(diào)遞減.
因?yàn)閔(-2)=e
-2+1>0,h'(
)=
e---1<0.
故h(t)在t∈(-2,t
0)上無(wú)零點(diǎn),在t
∈(t0,)上有唯一零點(diǎn).
由觀察易得h(0)=0,故a+1=0,即:a=-1.
綜上可得:存在唯一的a=-1使得f(x)在區(qū)間(
,+∞)上與x軸相切.