日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若函數(shù)為奇函數(shù),且時(shí)有極小值

          1)求實(shí)數(shù)的值;

          2)求實(shí)數(shù)的取值范圍;

          3)若恒成立,求實(shí)數(shù)的取值范圍.

          【答案】1; 2; 3.

          【解析】

          1)由題意,得到在定義域上恒成立,列出方程,即可求解;

          2)由(1)可得,求得導(dǎo)數(shù),分,兩種情況討論,即可求解;

          3)由代入,構(gòu)造新函數(shù),求得函數(shù)的單調(diào)性與最值,得到,即可求解實(shí)數(shù)的取值范圍.

          1)由題意,函數(shù)為奇函數(shù),

          可得在定義域上恒成立,即,

          化簡(jiǎn)整理得,所以.

          2)由(1)可得,則

          當(dāng)時(shí),又由恒成立,即恒成立,所以不存在極小值;

          當(dāng)時(shí),令,則方程有兩個(gè)不等的正根

          故可知函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

          可得當(dāng)時(shí)函數(shù)取得極小值,

          所以實(shí)數(shù)的取值范圍是.

          3)由(2)和函數(shù)為奇函數(shù),當(dāng)時(shí)有極小值,

          可得,且,即

          代入,可得

          所以,

          構(gòu)造新函數(shù),則,

          當(dāng),則,所以當(dāng)時(shí),恒成立,

          故函數(shù)在定義域上單調(diào)遞減,其中,則

          可轉(zhuǎn)化為,所以,

          ,設(shè),可得,

          所以函數(shù)上遞增,故,

          又由(2)可知,所以實(shí)數(shù)的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《周髀算經(jīng)》是我國(guó)古代的天文學(xué)和數(shù)學(xué)著作.其中有一個(gè)問題大意為:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣晷長(zhǎng)損益相同(即太陽(yáng)照射物體影子的長(zhǎng)度增加和減少大小相同).二十四個(gè)節(jié)氣及晷長(zhǎng)變化如圖所示,若冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺五寸(注:一丈等于十尺,一尺等于十寸),則夏至后的那個(gè)節(jié)氣(小暑)晷長(zhǎng)為(

          A.五寸B.二尺五寸C.三尺五寸D.四尺五寸

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某企業(yè)為了參加上海的進(jìn)博會(huì),大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

          試銷單價(jià)x(元)

          4

          5

          6

          7

          8

          9

          產(chǎn)品銷量y(件)

          q

          84

          83

          80

          75

          68

          已知.參考公式:,

          1)求出q的值;

          2)已知變量xy具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程

          3)用表示用正確的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)銷售數(shù)據(jù)中至少有一個(gè)是好數(shù)據(jù)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正四面體 ABCD 中,P,Q分別是棱 AB,CD的中點(diǎn),E,F(xiàn)分別是直線AB,CD上的動(dòng)點(diǎn),M 是EF 的中點(diǎn),則能使點(diǎn) M 的軌跡是圓的條件是( )

          A. PE+QF=2B. PEQF=2

          C. PE=2QFD. PE2+QF2=2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解某冷飲店的經(jīng)營(yíng)狀況,隨機(jī)記錄了該店月的月營(yíng)業(yè)額(單位:萬(wàn)元)與月份的數(shù)據(jù),如下表:

          (1)求關(guān)于的回歸直線方程

          (2)若在這樣本點(diǎn)中任取兩點(diǎn),求恰有一點(diǎn)在回歸直線上的概率.

          附:回歸直線方程中,

          ,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)x都有e是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于x的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).

          (1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;

          (2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某生鮮超市每天從蔬菜生產(chǎn)基地購(gòu)進(jìn)某種蔬菜,每天的進(jìn)貨量相同,進(jìn)價(jià)6/千克,售價(jià)9/千克,當(dāng)天未售出的蔬菜被生產(chǎn)基地以2/千克的價(jià)格回收處理.該超市發(fā)現(xiàn)這種蔬菜每天都有剩余,為此整理了過往30天這種蔬菜的日需求量(單位:千克),得到如下統(tǒng)計(jì)數(shù)據(jù):

          日需求量

          160

          170

          180

          190

          200

          210

          220

          天數(shù)

          3

          6

          6

          9

          4

          1

          1

          以這30天記錄的各日需求量的頻率作為各日需求量的概率,假設(shè)各日需求量相互獨(dú)立.

          1)求在未來(lái)的3天中,至多有1天的日需求量不超過190千克的概率;

          2)超市為了減少浪費(fèi),提升利潤(rùn),決定調(diào)整每天的進(jìn)貨量(單位:千克),以銷售這種蔬菜的日利潤(rùn)的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《周髀算經(jīng)》中有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列,冬至、立春、春分日影長(zhǎng)之和為31.5尺,前九個(gè)節(jié)氣日影長(zhǎng)之和為85.5尺,則小滿日影長(zhǎng)為(

          A.1.5B.2.5C.3.5D.4.5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案