日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】關(guān)于函數(shù)有下列四個(gè)結(jié)論:

          是偶函數(shù);②的最小正周期為;③上單調(diào)遞增;④的值域?yàn)?/span>

          上述結(jié)論中,正確的為(

          A.③④B.②④C.①③D.①④

          【答案】D

          【解析】

          由二倍角的余弦公式和余弦函數(shù)的性質(zhì),化簡(jiǎn)fx),由f(﹣x)=fx),可判斷;可令t|cosx|,可得gt)=2t2+t1,由函數(shù)的周期性可判斷;由y|cosx|的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性可判斷;由二次函數(shù)的單調(diào)性可判斷

          解:,

          ,可得,

          ,則為偶函數(shù),故①正確;

          可令,則,

          可得上單調(diào)遞增,

          的最小正周期,可得的最小正周期為,故②錯(cuò)誤;

          遞增,在遞減,

          由復(fù)合函數(shù)的單調(diào)性可得,遞增,在遞減,故③錯(cuò)誤;

          ,,∵遞增,則的值域?yàn)?/span>,故④正確.

          上述結(jié)論中,正確的為①④;

          故選:D

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)討論fx)的單調(diào)性;

          2)證明:當(dāng)﹣1a0時(shí),fx)存在唯一的零點(diǎn)x0,且x0隨著a的增大而增大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為(  )

          A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】手機(jī)運(yùn)動(dòng)計(jì)步已經(jīng)成為一種新時(shí)尚.某單位統(tǒng)計(jì)了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

          1)求直方圖中a的值,并由頻率分布直方圖估計(jì)該單位職工一天步行數(shù)的中位數(shù);

          2)若該單位有職工200人,試估計(jì)職工一天行走步數(shù)不大于13000的人數(shù);

          3)在(2)的條件下,該單位從行走步數(shù)大于150003組職工中用分層抽樣的方法選取6人參加遠(yuǎn)足拉練活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來自區(qū)間(150,170]的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面上兩定點(diǎn)M0,﹣2)、N0,2),P為一動(dòng)點(diǎn),滿足||||

          I)求動(dòng)點(diǎn)P的軌跡C的方程;

          II)若A、B是軌跡C上的兩不同動(dòng)點(diǎn),且λ.分別以A、B為切點(diǎn)作軌跡C的切線,設(shè)其交點(diǎn)Q,證明為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時(shí)刻,甲船在最前面的點(diǎn)處,乙船在中間點(diǎn)處,丙船在最后面的點(diǎn)處,且.一架無人機(jī)在空中的點(diǎn)處對(duì)它們進(jìn)行數(shù)據(jù)測(cè)量,在同一時(shí)刻測(cè)得, .(船只與無人機(jī)的大小及其它因素忽略不計(jì))

          (1)求此時(shí)無人機(jī)到甲、丙兩船的距離之比;

          (2)若此時(shí)甲、乙兩船相距100米,求無人機(jī)到丙船的距離.(精確到1米)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.

          1)求的分布列及數(shù)學(xué)期望;

          2)在概率(=0,12,3), 的值最大, 求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購(gòu)買意向的調(diào)查,將計(jì)劃在今年購(gòu)買5G手機(jī)的員工稱為追光族",計(jì)劃在明年及明年以后才購(gòu)買5G手機(jī)的員工稱為觀望者,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于追光族的女性員工和男性員工各有20.

          1)完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為該公司員工屬于追光族"性別"有關(guān);

          屬于追光族"

          屬于觀望者"

          合計(jì)

          女性員工

          男性員工

          合計(jì)

          100

          2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于追光族”.現(xiàn)從這10名中隨機(jī)抽取3名,記被抽取的3名中屬于追光族的人數(shù)為隨機(jī)變量X,求的分布列及數(shù)學(xué)期望.

          ,其中

          0.15

          0.10

          0.05

          0.025

          p>0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)點(diǎn),分別是橢圓:的左、右焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的距離的最小值為.點(diǎn)M、N是橢圓上位于軸上方的兩點(diǎn),且向量與向量平行.

          1)求橢圓的方程;

          2)當(dāng)時(shí),求△的面積;

          3)當(dāng)時(shí),求直線的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案