日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1,F(xiàn)2分別是橢圓C:的上、下焦點,其中F1也是拋物線C1:x2=4y的焦點,點M是C1與C2在第二象限的交點,且
          (1)求橢圓C1的方程;
          (2)已知A(b,0),B(0,a),直線y=kx(k>0)與AB相交于點D,與橢圓C1相交于點E,F(xiàn)兩點,求四邊形AEBF面積的最大值.
          【答案】分析:(1)利用拋物線的標準方程即可得出焦點坐標,再利用拋物線的定義和點M在拋物線上即可得到點M的坐標;利用點M在橢圓C1上滿足橢圓的方程和c2=a2-b2即可得到橢圓的方程;
          (2)設E(x1,y1),F(xiàn)(x2,y2),其中x1<x2,由點F滿足,及,故四邊形AEBF的面積S=S△BEF
          +S△AEF==,再利用基本不等式的性質(zhì)即可得出.
          解答:解:(1)由拋物線C1:x2=4y的焦點,得焦點F1(1,0).
          設M(x,y)(x<0),由點M在拋物線上,
          ,解得,
          而點M在橢圓C1上,∴,化為,
          聯(lián)立,解得,
          故橢圓的方程為
          (2)由(1)可知:|AO|=,|BO|=2.設E(x1,y1),F(xiàn)(x2,y2),其中x1<x2,
          把y=kx代人,可得,x2>0,y2=-y1>0,且
          ,
          故四邊形AEBF的面積S=S△BEF+S△AEF==
          ==
          當且僅當時上式取等號.
          ∴四邊形AEBF面積的最大值為
          點評:本題綜合考查了橢圓拋物線的標準方程及其性質(zhì)、直線與橢圓相交問題、四邊形的面積轉化為三角形的面積計算、基本不等式的性質(zhì)等基礎知識與方法,需要較強的推理能力和計算能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
          x25
          +y2=1
          的左、右焦點F1,F(xiàn)2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
          (Ⅰ)求圓C的方程;
          (Ⅱ)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•青島二模)已知F1、F2分別是雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
          PF2
          F1F2
          ,且|
          PF1
          |=
          2
          |
          PF2
          |
          ,則雙曲線的離心率為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1 (a>0, b>0)
          的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點,且橢圓C的離心率e=
          1
          2
          ,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
          DF2
          =
          F2E
          ,點E關于x軸的對稱點為G,求直線GD的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左,右焦點,P是雙曲線的上一點,若
          PF1
          PF2
          =0
          |
          PF1
          |•|
          PF2
          |=3ab
          ,則雙曲線的離心率是
           

          查看答案和解析>>

          同步練習冊答案