日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項和Sn=f(n),
          (1)求數(shù)列{an}的通項公式;
          (2)試構(gòu)造一個數(shù)列{bn},(寫出{bn}的一個通項公式)滿足:對任意的正整數(shù)n都有bn<an,且
          lim
          n→∞
          an
          bn
          =2,并說明理由;
          (3)設(shè)各項均不為零的數(shù)列{cn}中,所有滿足ci-ci+1<0的正整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的變號數(shù).令cn=1-
          a
          an
          (n為正整數(shù)),求數(shù)列{cn}的變號數(shù).
          (1)∵f(x)≤0的解集有且只有一個元素,∴△=a2-4a=0
          ∴a=0或4,
          當a=0時,函數(shù)f(x)=x2在(0,+∝)上遞增,故不存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
          當a=4時,函數(shù)f(x)=x2-4x+4在(0,2)上遞減,故存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
          an=Sn-Sn-1=
          1,n=1
          2n-5,n≥2
          綜上,得a=4,f(x)=x2-4x+4,∴Sn=n2-4n+4
          (2)要使
          lim
          n→∞
          an
          bn
          =2,,可構(gòu)造數(shù)列bn=n-k,
          ∵對任意的正整數(shù)n都有bn<an,
          ∴當n≥2時,n-k<2n-5恒成立,即n>5-k恒成立,即5-k<2
          ∴k>3,
          又bn≠0,∴k∉N*,∴bn=n-
          3
          2
          ,.
          (3)由題設(shè)Cn=
          -3,n=1
          1-
          4
          2n-5
          ,n≥2
          ,
          ∵n≥3時,Cn+1-Cn=
          4
          2n-5
          -
          4
          2n-3
          =
          8
          (2n-5)(2n-3)
          >0,
          ∴n≥3時,數(shù)列{cn}遞增,
          ∵a4=-
          1
          3
          <0,由1-
          4
          2n-5
          >0
          n≥5,可知a4-a5<0,即n≥3時,有且只有1個變號數(shù);
          又∵C1=-3,C2=-5,C3=-3,即C1-C2<0,C2-C3<0,∴此處變號數(shù)有2個.
          綜上得數(shù)列共有3個變號數(shù),即變號數(shù)為3.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
          (Ⅰ)求f(x)的表達式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

          查看答案和解析>>

          同步練習冊答案