若y=f(x)為奇函數(shù),在(0,+∞)上單調(diào)遞增,且f(3)=0,則xf(x)>0的解集為( )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪(0,3)
C.(-∞,-3)∪(0,3)
D.(-∞,-3)∪(3,+∞)
【答案】分析:由已知中函數(shù)的單調(diào)性和奇偶性結(jié)合f(3)=0,可得各個區(qū)間上函數(shù)值的符號,進(jìn)而得到xf(x)>0的解集
解答:解:∵y=f(x)在(0,+∞)上單調(diào)遞增,且f(3)=0,
∴當(dāng)x∈(0,3)時,f(x)<0,此時xf(x)<0
當(dāng)x∈(3,+∞)時,f(x)>0,此時xf(x)>0
又∵y=f(x)為奇函數(shù),
∴y=f(x)在(-∞,0)上單調(diào)遞增,且f(-3)=0,
∴當(dāng)x∈(-∞,-3)時,f(x)<0,此時xf(x)>0
當(dāng)x∈(-3,0)時,f(x)>0,此時xf(x)<0
綜上xf(x)>0的解集為(-∞,-3)∪(3,+∞)
故選D
點評:本題考查的知識點是函數(shù)的奇偶性和函數(shù)的單調(diào)性,其中根據(jù)奇函數(shù)的單調(diào)性在對稱區(qū)間上相同,判斷出函數(shù)的單調(diào)性是解答的關(guān)鍵.