日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,已知A(3,1),C(1,0).
          (1)求以點(diǎn)C為圓心,且經(jīng)過點(diǎn)A的圓C的標(biāo)準(zhǔn)方程;
          (2)若直線l的方程為x-2y+9=0,判斷直線l與(1)中圓C的位置關(guān)系,并說明理由.
          分析:(1)因?yàn)閳AC的圓心為C(1,0),可設(shè)圓C的標(biāo)準(zhǔn)方程為(x-1)2+y2=r2.把點(diǎn)A(3,1)代入圓C的方程求得r2=5,從而求得圓C的標(biāo)準(zhǔn)方程.
          (2)由于圓心C到直線l的距離為d=
          |1-2×0+9|
          22+12
          =2
          5
          ,大于半徑,可得直線l與圓C相離.
          解答:解:(1)因?yàn)閳AC的圓心為C(1,0),可設(shè)圓C的標(biāo)準(zhǔn)方程為(x-1)2+y2=r2
          因?yàn)辄c(diǎn)A(3,1)在圓C上,所以(3-1)2+12=r2,即r2=5.
          所以圓C的標(biāo)準(zhǔn)方程為(x-1)2+y2=5.
          (2)由于圓心C到直線l的距離為d=
          |1-2×0+9|
          22+12
          =2
          5

          因?yàn)?span id="cmjtsoi" class="MathJye">2
          5
          5
          ,即d>r,所以直線l與圓C相離.
          點(diǎn)評(píng):本小題主要考查圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),點(diǎn)到直線的距離公式的應(yīng)用,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
          3
          5
          ,點(diǎn)B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案