日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),

          過(guò)Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
          (1)求橢圓方程;
          (2)若圓N與x軸相切,求圓N的方程;
          (3)設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.
          (1)=1(2)(3)
          (1)∵e=不妨設(shè)c=3k,a=5k,則b=4k,其中k>0,故橢圓方程為=1(a>b>0),∵P在橢圓上,∴=1解得k=1,∴橢圓方程為=1.
          (2)kAP,則直線AP的方程為y=-x+4,
          令y=t,則x=∴M.∵Q(0,t)∴N
          ∵圓N與x軸相切,∴=t,由題意M為第一象限的點(diǎn),則=t,解得t=.∴N,圓N的方程為.
          (3)F(3,0),kPF,∴直線PF的方程為y=(x-3)即12x-5y-36=0,
          ∴點(diǎn)N到直線PF的距離為,
          ∴d=(4-t),∵0<t<4,
          ∴當(dāng)0<t≤時(shí),d=(6-5t)+(4-t)=,此時(shí)≤d<
          當(dāng)<t<4時(shí),d=(5t-6)+(4-t)=,此時(shí)<d<,
          ∴綜上,d的取值范圍為.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓經(jīng)過(guò)點(diǎn),離心率為
          (1)求橢圓的方程;
          (2)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn).直線與直線分別與軸交于點(diǎn),試問(wèn)以線段為直徑的圓是否過(guò)軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,橢圓C0=1(a>b>0,a、b為常數(shù)),動(dòng)圓C1:x2+y2,b<t1<a.點(diǎn)A1、A2分別為C0的左、右頂點(diǎn),C1與C0相交于A、B、C、D四點(diǎn).

          (1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
          (2)設(shè)動(dòng)圓C2:x2+y2與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為.
          (1)求軌跡的方程;
          (2)已知,過(guò)定點(diǎn)的動(dòng)直線交軌跡兩點(diǎn),的外心為.若直線的斜率為,直線的斜率為,求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,如果線段的中點(diǎn)在軸上,那么的(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1(,0)與定直線l1∶x=的距離之比為常數(shù).
          (1)求曲線C的軌跡方程;
          (2)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求·的最小值,并求此時(shí)圓T的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

          (1)求點(diǎn)B的軌跡方程;
          (2)當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),求直線PQ的方程;
          (3)若G是圓C上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長(zhǎng)度是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          直線y=kx-k+1與橢圓=1的位置關(guān)系是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓=1(a>b>0),點(diǎn)P在橢圓上.
          (1)求橢圓的離心率;
          (2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案