【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的極坐標(biāo)方程及直線
的直角坐標(biāo)方程;
(2)設(shè)直線與曲線
交于
兩點(diǎn),求
.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析:
(1)對(duì)于圓的方程,消去參數(shù)即可得到直角坐標(biāo)方程,然后寫出極坐標(biāo)方程即可,對(duì)于直線的極坐標(biāo)方程,將其轉(zhuǎn)化為直角坐標(biāo)方程即可;
(2)求解弦長(zhǎng)的問(wèn)題首先考查圓心到直線的距離,然后結(jié)合平面幾何相關(guān)結(jié)合求解弦長(zhǎng)即可.
試題解析:
(Ⅰ)圓 (
為參數(shù))得曲線
的直角坐標(biāo)方程:
,
所以它的極坐標(biāo)方程為;
直線的直角坐標(biāo)方程為
.
(Ⅱ)直線的直角坐標(biāo)方程:
;
圓心到直線
的距離
,圓
的半徑
,
弦長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)的動(dòng)直線與圓
相交于不同的兩點(diǎn)
.
(1)求線段的中點(diǎn)
的軌跡
的方程;
(2)是否存在實(shí)數(shù),使得直線
與曲線
只有一個(gè)交點(diǎn)?若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時(shí)的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ ,
]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓和圓
.
(1)判斷圓和圓
的位置關(guān)系;
(2)過(guò)圓的圓心
作圓
的切線
,求切線
的方程;
(3)過(guò)圓的圓心
作動(dòng)直線
交圓
于A,B兩點(diǎn).試問(wèn):在以AB為直徑的所有圓中,是否存在這樣的圓
,使得圓
經(jīng)過(guò)點(diǎn)
?若存在,求出圓
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一企業(yè)從某生產(chǎn)線上隨機(jī)抽取件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值
,得到的頻率分布直方圖如圖.
(1)估計(jì)該技術(shù)指標(biāo)值平均數(shù)
;
(2)在直方圖的技術(shù)指標(biāo)值分組中,以落入各區(qū)間的頻率作為
取該區(qū)間值的頻率,若
,則產(chǎn)品不合格,現(xiàn)該企業(yè)每天從該生產(chǎn)線上隨機(jī)抽取
件產(chǎn)品檢測(cè),記不合格產(chǎn)品的個(gè)數(shù)為
,求
的數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)來(lái)臨,有農(nóng)民工兄弟、
、
、
四人各自通過(guò)互聯(lián)網(wǎng)訂購(gòu)回家過(guò)年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若
、
、
、
獲得火車票的概率分別是
,其中
,又
成等比數(shù)列,且
、
兩人恰好有一人獲得火車票的概率是
.
(1)求的值;
(2)若、
是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)
表示
、
、
、
能夠回家過(guò)年的人數(shù),求
的分布列和期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△AOB中,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點(diǎn)C,△AOC為鈍角三角形的概率是( )
A.0.2
B.0.4
C.0.6
D.0.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,上、下頂點(diǎn)分別是
,點(diǎn)
是
的中點(diǎn),若
,且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)的直線
與橢圓
交于不同的兩點(diǎn)
,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知=
(
).
(Ⅰ)當(dāng)=2時(shí),求函數(shù)
在(1,
)處的切線方程;
(Ⅱ)若≥1時(shí),
≥0,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com