(本題滿(mǎn)分12分)
在△中,角
所對(duì)的邊分別為
,已知
,
,
.
(1)求的值;
(2)求的值.
(1)(2)
解析試題分析:解:(1)由余弦定理,,
得,
.
(2)方法1:由余弦定理,得,
∵是
的內(nèi)角,∴
.
方法2:∵,且
是
的內(nèi)角,
∴.
根據(jù)正弦定理,,得
.
考點(diǎn):解三角形
點(diǎn)評(píng):熟練的運(yùn)用正弦定理和余弦定理是解決該試題的關(guān)鍵,同時(shí)要根據(jù)同角關(guān)系式來(lái)求解函數(shù)值,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),滿(mǎn)足
=
(Ⅰ)求角B的大;(Ⅱ)設(shè)
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
在中,a,b,c分別是角A,B,C的對(duì)邊,已知
(1)求的大;
(2)設(shè)且
的最小正周期為
,求
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)在△ABC中,BC=,AC=3,sinC=2sinA.
(Ⅰ)求邊長(zhǎng)AB的值;
(Ⅱ)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇。
(Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大。,使得小艇能以最短時(shí)間與輪船相遇,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知在銳角△ABC中,a, b, c分別為角A、B、C所對(duì)的邊,向量,
,
.
(1)求角A的大小;
(2)若a=3,求△ABC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com