【題目】如圖,OAB是一塊半徑為1,圓心角為 的扇形空地.現(xiàn)決定在此空地上修建一個矩形的花壇CDEF,其中動點C在扇形的弧
上,記∠COA=θ.
(Ⅰ)寫出矩形CDEF的面積S與角θ之間的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)角θ取何值時,矩形CDEF的面積最大?并求出這個最大面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐.
D.棱臺各側(cè)棱的延長線交于一點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是為求S=1+ +
+…
的和而設(shè)計的程序框圖,將空白處補(bǔ)上,指明它是循環(huán)結(jié)構(gòu)中的哪一種類型,并畫出它的另一種循環(huán)結(jié)構(gòu)框圖.如圖是當(dāng)型循環(huán)結(jié)構(gòu).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,
為不共共線的非零向量,且|
|=|
|=1,則以下四個向量中模最大者為( )
A.
+
B.
+
C.
+
D.
+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知θ為向量 與
的夾角,|
|=2,|
|=1,關(guān)于x的一元二次方程x2﹣|
|x+
=0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+ )的最值及對應(yīng)的θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長為
的正方形,側(cè)面
底面,且
,
、
分別為
、
的中點.
(1)求證: 平面
;
(2)求證:面平面
;
(3)在線段上是否存在點
,使得二面角
的余弦值為
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先將函數(shù)y=f(x)的圖象向左平移 個單位,然后再將所得圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,最后再將所得圖象向上平移1個單位,得到函數(shù)y=sinx的圖象.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于點M( ,2)對稱,求函數(shù)y=g(x)在[0,
]上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
和拋物線
:
,
為坐標(biāo)原點.
(1)已知直線和圓
相切,與拋物線
交于
兩點,且滿足
,求直線
的方程;
(2)過拋物線上一點
作兩直線
和圓
相切,且分別交拋物線
于
兩點,若直線
的斜率為
,求點
的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com