【題目】2009年推出一種新型家用轎車(chē),購(gòu)買(mǎi)時(shí)費(fèi)用為萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共
萬(wàn)元,汽車(chē)的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為
萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加
萬(wàn)元.(1)設(shè)該輛轎車(chē)使用
年的總費(fèi)用(包括購(gòu)買(mǎi)費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為
,求
的表達(dá)式;(2)這種汽車(chē)使用多少年報(bào)廢最合算(即該車(chē)使用多少年,年平均費(fèi)用最少)?
【答案】(1);(2)
.
【解析】
試題分析:根據(jù)題意分析可知,使用年的總費(fèi)用包含三部分,第一部分是購(gòu)買(mǎi)費(fèi)用,固定值為
萬(wàn)元,第二部分是保險(xiǎn)費(fèi)用、養(yǎng)路費(fèi)及汽油費(fèi)用共
萬(wàn)元,第三部分是維修費(fèi)用,根據(jù)題意維修用為等差數(shù)列,首項(xiàng)為
,公差為
,因此
年的維修費(fèi)用為
,所以
;(2)根據(jù)題意,年平均費(fèi)用為
,所以問(wèn)題轉(zhuǎn)化為求
的最小值,可以利用均值不等式求最小值.
試題解析:(1)由題意得:每年的維修費(fèi)構(gòu)成一等差數(shù)列,年的維修總費(fèi)用為
(萬(wàn)元)………………………………3分
所以(萬(wàn)元)……………………6分
(2)該輛轎車(chē)使用年的年平均費(fèi)用為
………………………………8分
(萬(wàn)元)……………………………………10分
當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)
.
答:這種汽車(chē)使用12年報(bào)廢最合算.…………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量.
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足
的概率;
(2)若在連續(xù)區(qū)間
上取值,求滿足
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線:
,半徑為2的圓
與
相切,圓心
在
軸上且在直線
的右上方.
(1)求圓的方程;
(2)若直線過(guò)點(diǎn)且與圓
交于
,
兩點(diǎn)(
在
軸上方,
在
軸下方),問(wèn)在
軸正半軸上是否存在定點(diǎn)
,使得
軸平分
?若存在,請(qǐng)求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(I)求證:在區(qū)間
上單調(diào)遞增;
(II)若,函數(shù)
在區(qū)間
上的最大值為
,求
的試題分析式.并判斷
是否有最大值和最小值,請(qǐng)說(shuō)明理由(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,2015年合肥市勝利工廠在市政府的大力支持下,進(jìn)行技術(shù)改進(jìn):把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本(萬(wàn)元)與處理量
(噸)之間的函數(shù)關(guān)系可近似地表示為:
且每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品.
(1)當(dāng)時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?
(2)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若不等式的解集是
,求不等式
的解集;
(2)當(dāng)時(shí),對(duì)任意的
都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:方程
有兩個(gè)不等的負(fù)根;
:方程
無(wú)實(shí)根.若“
或
”為真,“
且
”為假,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市有一直角梯形綠地,其中
,
km,
km.現(xiàn)過(guò)邊界
上的點(diǎn)
處鋪設(shè)一條直的灌溉水管
,將綠地分成面積相等的兩部分.
(1)如圖①,若為
的中點(diǎn),
在邊界
上,求灌溉水管
的長(zhǎng)度;
(2)如圖②,若在邊界
上,求灌溉水管
的最短長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中用表示.
(1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com