日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)設(shè)函數(shù),且的極值點.

          (Ⅰ) 若的極大值點,求的單調(diào)區(qū)間(用表示);

          (Ⅱ) 若恰有兩解,求實數(shù)的取值范圍.

           

          【答案】

           

          【解析】

          試題分析:解:,又,則,

          所以,              3分

          (Ⅰ)因為的極大值點,所以.

          ,得;令,得.

          所以的遞增區(qū)間為,;遞減區(qū)間為.            6分

          (Ⅱ)①若,則上遞減,在上遞增.

          恰有兩解,則,即,所以.       8分

          ②若,則,.

          因為,則,

          ,從而只有一解;             10分

          ③若,則,

          從而,

          只有一解.                         12分

          綜上,使恰有兩解的的范圍為     14分

          考點:本題考查導數(shù)的應(yīng)用,分類討論思想,考查運算求解能力、邏輯思維能力和分析問題解決問題的能力,較難題.

          點評:

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (本題滿分14分)

          設(shè)函數(shù),

          (1)若,過兩點的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;

          (2)若,當恒成立,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當時,用數(shù)學歸納法證明:

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011——2012學年湖北省洪湖二中高三八月份月考試卷理科數(shù)學 題型:解答題

          (本題滿分14分)設(shè)橢圓的左、右焦點分別為F1
          F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若的周長為。
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
          且與橢圓C交于不同的兩點A、B,若,求面積的取值范圍。(O為坐標原點)

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三寒假作業(yè)數(shù)學卷三 題型:解答題

          (本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實數(shù)根;②函數(shù)的導數(shù)滿足

           (I)證明:函數(shù)是集合M中的元素;

           (II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。 

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題

          本題滿分14分)

          設(shè)函數(shù).

          (1)若,求函數(shù)的極值;

          (2)若,試確定的單調(diào)性;

          (3)記,且上的最大值為M,證明:

           

           

          查看答案和解析>>

          同步練習冊答案