日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)是定義在R上的可導函數(shù),對任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關系是( 。
          A.f(2)>f(e)•ln2B.f(2)=f(e)•ln2C.f(2)<f(e)•ln2D.不能確定
          考察函數(shù)F(x)=
          f(x)
          lnx

          則F′(x)=
          f′(x)lnx-f(x)•
          1
          x
          ln 2x
          =
          [x•f′(x)lnx-f(x)]
          1
          x
          ln 2x
          ,
          ∵對任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,
          ∴F′(x)<0,
          ∴F(x)在(0,+∞)是減函數(shù),
          ∴F(e)<F(2)即
          f(e)
          lne
          f(2)
          ln2

          ∴f(2)>f(e)•ln2.
          故選A.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內單調遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
          f(a)+f(b)
          a+b
          >0

          (1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
          (2)解不等式:f(
          1
          x-1
          )>0,x∈(0,+∞);
          (3)若f′(x)=-2x+1+
          1
          x
          =-
          2x2-x-1
          x
          對所有f'(x)=0,任意x=-
          1
          2
          恒成立,求實數(shù)x=1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設a=f(log47),b=f(log
          12
          3)
          ,c=f(0.2-0.6),則a,b,c的大小關系
          a>b>c
          a>b>c

          查看答案和解析>>

          同步練習冊答案