設

是曲線

上的任一點,

是曲線

上的任一點,稱

的最小值為曲線

與曲線

的距離.
(1)求曲線

與直線

的距離;
(2)設曲線

與直線

(

)的距離為

,直線

與直線

的距離為

,求

的最小值.
(1)

;(2)

.
試題分析:(1)曲線

上任意一點點

到

的距離為

,用求導的方法判斷最小值;(2)根據(jù)題意,

,應用基本不等式求出最小值,注意一正二定三相等.
試題解析:(1)只需求曲線

上的點到直線

距離的最小值. 1分
設曲線

上任意一點為

則點

到

的距離為

3分
令

,則

,由

;

5分
故當

時, 函數(shù)

取極小值即最小值

,
即

取最小值

,故曲線

與曲線

的距離為

; 8分
(2)由(1)可知,

,又易知

, 9分
則

, 12分
當且僅當

時等號成立,考慮到

,所以,當

時,

的最小值為

. 14分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
給定兩個長度為1的平面向量
和
,它們的夾角為120°.如圖所示,點C在以O為圓心,以1半徑的圓弧AB上變動.若
=x
+y
,其中x,y∈R,則x+y的最大值是______.

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
,
是兩個非零向量.則下列命題為真命題的是( 。
A.若|+|=||-||,則⊥ |
B.若⊥,則|+|=||-|| |
C.若|+|=||-||,則存在實數(shù)λ,使得=λ |
D.若存在實數(shù)λ,使得=λ,則|+|=||-|| |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知△ABC的邊AB邊所在直線的方程為x-3y-6=0,M(2,0)滿足
=,點T(-1,1)在AC邊所在直線上且滿足
•=0.
(1)求AC邊所在直線的方程;
(2)求△ABC外接圓的方程;
(3)若動圓P過點N(-2,0),且與△ABC的外接圓外切,求動圓P的圓心的軌跡方程.

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知

,

,若動點

滿足

,

點的軌跡為曲線

.
(Ⅰ)求曲線

的方程;
(Ⅱ)試確定

的取值范圍,使得對于直線

:

,曲線

上總有不同的兩點關于直線

對稱.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
求過點A(2,0)、B(6,0)和C(0,-2)的圓的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
點B是點A(1,2,3)在坐標平面yOz內(nèi)的射影,則|OB|=
查看答案和解析>>