日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=ex-ax,其中a>0.若對(duì)?x∈R,f(x)≥1恒成立,則a的取值集合是
          {a∈R|a-alna-1≥0}
          {a∈R|a-alna-1≥0}
          分析:由題意f(x)=ex-ax,其中a>0,利用導(dǎo)數(shù)求出f(x)的最小值,讓f(x)的最小值大于等于1,從而求出a的取值范圍;
          解答:解:∵f(x)=ex-ax,其中a>0,
          ∴f′(x)=ex-a,
          令f(x)=0,得x=lna,
          只有唯一的極值點(diǎn),也就是最值點(diǎn),
          ∴fmin(x)=f(lna)=a-alna,
          ∴a-alna≥1,即可,
          ∴a的取值集合是{a∈R|a-alna-1≥0},
          故答案為{a∈R|a-alna-1≥0}.
          點(diǎn)評(píng):此題是函數(shù)的恒成立問題,利用導(dǎo)數(shù)求f(x)的最值,也不是很難,是一道基礎(chǔ)題,許多學(xué)生求出a-alna≥1,解不出a的范圍,但是題是用集合表示,不需要解出來,這也是此題容易出錯(cuò)的地方;
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ex+e-x+2|x|,又不等式f(ax)>f(x-1)在x∈[
          1
          2
          ,+∞)
          恒成立,則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ex-ax-1.
          (1)求f(x)的單調(diào)增區(qū)間;
          (2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍;
          (3)是否存在a,使f(x)在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?若存在,求出a的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ex,f(x)的導(dǎo)數(shù)為f'(x),則f'(-2)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ex-ax(e=2.718…)
          (Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)上有兩個(gè)零點(diǎn),求a的取值范圍;
          (Ⅲ) A(xl,yl),B(x2,y2)是f(x)的圖象上任意兩點(diǎn),且x1<x2,若總存在xo∈R,使得f′(xo)=
          y1-y2x1-x2
          ,求證:xo>xl

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ex-ax-1.
          (1)求f(x)的單調(diào)增區(qū)間;
          (2)求證:ex>x+1(x≠0).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案