【題目】如圖,在四棱柱 中,側(cè)面
和側(cè)面
都是矩形,
是邊長(zhǎng)為
的正三角形,
分別為
的中點(diǎn).
(1)求證: 平面
;
(2)求證:平面平面
.
(3)若平面
,求棱
的長(zhǎng)度.
【答案】(1)詳見(jiàn)解析; (2)詳見(jiàn)解析; (3)1.
【解析】試題分析:(1)本問(wèn)考查線面垂直的證明,根據(jù)線面垂直判定定理可知,應(yīng)證明與平面ABCD內(nèi)的兩條相交直線垂直,根據(jù)已知條件側(cè)面
和側(cè)面
都是矩形,所以
,且
,于是問(wèn)題得證;(2)本問(wèn)考查面面垂直的證明,應(yīng)先證明線面垂直,根據(jù)題中條件
為正三角形,E為AD中點(diǎn),所以BE
AD,根據(jù)面面垂直的性質(zhì)定理,則BE
平面
,
平面
,所以問(wèn)題得證;(3)本問(wèn)考查線面平行的性質(zhì)定理,確定經(jīng)過(guò)CF的平面與平面
的交線,從而得到CF平行于交線,然后根據(jù)平面幾何知識(shí)求BC的長(zhǎng)度.
試題解析:(1)因?yàn)閭?cè)面和側(cè)面
都是矩形,所以
,且
.因?yàn)?/span>
,所以
平面
.
(2)因?yàn)?/span>是正三角形,且
為
中點(diǎn),所以
,因?yàn)?/span>
平面
,而
平面
,所以
.因?yàn)?/span>
,所以
平面
,因?yàn)?/span>
平面
,所以平面
平面
.
(3)因?yàn)?/span>,而
為
的中點(diǎn),所以
,所以
四點(diǎn)共面.因?yàn)?/span>
平面
,而平面
平面
,所以
.所以四邊形
是平行四邊形.所以
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鋼廠打算租用,
兩種型號(hào)的火車車皮運(yùn)輸900噸鋼材,
,
兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬(wàn)元/個(gè)和2.4萬(wàn)元/個(gè),鋼廠要求租車皮總數(shù)不超過(guò)21個(gè),且
型車皮不多于
型車皮7個(gè),分別用
,
表示租用
,
兩種車皮的個(gè)數(shù).
(Ⅰ)用,
列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)分別租用,
兩種車皮的個(gè)數(shù)是多少時(shí),才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是等差數(shù)列
的前
項(xiàng)和,已知
,
,
.
(1)求;
(2)若數(shù)列,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)結(jié)論:
①在△ABC中,若sinA>sinB,則必有cosA<cosB;
②在△ABC中,若a,b,c成等比數(shù)列,則角B的取值范圍為 ;
③等比數(shù)列{an}中,若a3=2,a7=8,則a5=±4;
④等差數(shù)列{an}的前n項(xiàng)和為Sn , S10<0且S11=0,滿足Sn≥Sk對(duì)n∈N*恒成立,則正整數(shù)k構(gòu)成集合為{5,6}
⑤若關(guān)于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集為R,則a的取值范圍為 .
其中正確結(jié)論的序號(hào)是 . (填上所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合P和Q中隨機(jī)取一個(gè)數(shù)a和b得到數(shù)對(duì)
。
(1)若,
,求函數(shù)
在
內(nèi)是偶函數(shù)的概率;
(2)若,
,求函數(shù)
有零點(diǎn)的概率;
(3)若,
,求函數(shù)
在區(qū)間
上是增函數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段: ,
,…,
,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>與
兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB=
,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,正確的是( )
①兩個(gè)平面同時(shí)垂直第三個(gè)平面,則這兩個(gè)平面可能互相垂直
②方程
表示經(jīng)過(guò)第一、二、三象限的直線
③若一個(gè)平面中有4個(gè)不共線的點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
④方程可以表示經(jīng)過(guò)兩點(diǎn)
的任意直線
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù)(其中
為自然對(duì)數(shù)的底數(shù),
).
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(2)若僅有一個(gè)極值點(diǎn),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com