日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.

          1)求證:;

          2)在棱上確定一點,使、、四點共面,并求此時的長;

          3)求平面與平面所成二面角的余弦值.

           

          1)詳見解析;(2;(3.

          【解析】

          試題分析:本題有兩種方法,第一種是傳統(tǒng)方法:(1)連接,先由正方體的性質(zhì)得到,以及平面,從而得到,利用直線與平面垂直的判定定理可以得到平面,于是得到;(2)假設(shè)四點、、四點共面,利用平面與平面平行的性質(zhì)定理得到,,于是得到四邊形為平行四邊形,從而得到的長度,再結(jié)合勾股定理得到的長度,最終得到的長度;(3)先延長、交于點,連接,找出由平面與平面所形成的二面角的棱,借助平面,從點在平面內(nèi)作,連接,利用三垂線法得到為平面與平面所形成的二面角的的平面角,然后在直角中計算的余弦值;

          第二種方法是空間向量法:(1)以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,確定的坐標,利用來證明,進而證明

          ;(2)先利用平面與平面平行的性質(zhì)定理得到,然后利用空間向量共線求出點的坐標,進而求出的長度;(3)先求出平面和平面的法向量,結(jié)合圖形得到由平面和平面所形成的二面角為銳角,最后再利用兩個平面的法向量的夾角來進行計算.

          試題解析:1)如下圖所示,連接,

          由于為正方體,所以四邊形為正方形,所以,

          平面,,

          ,平面,

          平面,;

          2)如下圖所示,假設(shè)、、四點共面,則、、四點確定平面,

          由于為正方體,所以平面平面,

          平面平面,平面平面,

          由平面與平面平行的判定定理得

          同理可得,因此四邊形為平行四邊形,

          中,,,

          由勾股定理得,

          在直角梯形中,下底,直角腰,斜腰,

          由勾股定理可得,

          結(jié)合圖形可知,解得;

          3)延長、,設(shè),連接,則是平面與平面的交線,

          過點,垂足為點,連接

          因為,,所以平面,

          因為平面,所以,

          所以為平面與平面所成二面角的平面角,

          因為,即,因此,

          中,,

          所以,

          因為,

          所以,

          所以

          所以,故平面與平面所成二面角的余弦值為.

          空間向量法:

          1)證明:以點為坐標原點,、、所在直線分別為軸、軸、軸,建立如下圖所示的空間直角坐標系,則、、、、,

          所以,,因為,

          所以,所以;

          2)設(shè),因為平面平面,

          平面平面,平面平面,所以

          所以存在實數(shù),使得,

          因為,所以

          所以,所以

          故當(dāng)時,、、四點共面;

          3)由(1)知,,

          設(shè)是平面的法向量,

          ,即

          ,則,所以是平面的一個法向量,

          是平面的一個法向量,

          設(shè)平面與平面所成的二面角為,

          ,

          故平面與平面所成二面角的余弦值為

          第(1)、(2)問用推理論證法,第(3)問用空間向量法,

          1)、(2)給分同推理論證法.

          3)以點為坐標原點,、所在直線分別為軸、軸、軸,建立如下圖所示的空間直角坐標系,則、、、,

          ,

          設(shè)是平面的法向量,

          ,即,

          ,則,,所以是平面的一個法向量,

          是平面的一個法向量,

          設(shè)平面與平面所成的二面角為,

          ,

          故平面與平面所成二面角的余弦值為;

          考點:1.直線與平面垂直;2.平面與平面平行的性質(zhì)定理;3.利用三垂線法求二面角;4.空間向量法

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題

          已知回歸直線斜率的估計值為1.23,樣本點的中心為點(4,5),則回歸直線的方程為(  )

          (A)=1.23x+4

          (B)=1.23x+5

          (C)=1.23x+0.08

          (D)=0.08x+1.23

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

          已知,是常數(shù)),若對曲線上任意一點處的切線,恒成立,求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

          某產(chǎn)品在某零售攤位上的零售價x()與每天的銷售量y()統(tǒng)計如下表:據(jù)上表可得回歸直線方程=ba中的b=-4,據(jù)此模型預(yù)計零售價定為15元時,銷售量為 ( )

          A48 B49 C50 D51

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

          拋物線的焦點坐標是( )

          A.(2,0B.(02 C.(l,0D.(0,1

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:填空題

          在數(shù)列中,已知,記為數(shù)列的前項和,則 .

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:選擇題

          已知集合,則集合中的元素個數(shù)為( )

          A. B. C. D.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學(xué)試卷(解析版) 題型:選擇題

          在數(shù)列中,已知,,記為數(shù)列的前項和,則( )

          A. B. C. D.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:填空題

          ABC中,a,bc分別是角A,BC的對邊,若absin Bsin C,則B等于________

           

          查看答案和解析>>

          同步練習(xí)冊答案