日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)n=
          π
          2
          0
          4cosxdx,則二項(xiàng)式(x-
          1
          x
          )
          n
          的展開(kāi)式的常數(shù)項(xiàng)是
          6
          6
          分析:先由積分求出n,寫(xiě)出展開(kāi)式的通項(xiàng)Tr+1=
          C
          r
          4
          x4-r(-
          1
          x
          )
          r
          =(-1)rC4rx4-2r,要求常數(shù)項(xiàng),只要令4-2r=0求出r即可
          解答:解:∵n=
          π
          2
          0
          4cosxdx=4sinx
          |
          π
          2
          0
          =4
          設(shè)第r項(xiàng)為常數(shù)項(xiàng),則Tr+1=
          C
          r
          4
          x4-r(-
          1
          x
          )
          r
          =(-1)rC4rx4-2r
          令4-2r=0可得r=2∴T3=C42=6
          故答案為:6
          點(diǎn)評(píng):本題主要考查了積分的計(jì)算,利用二項(xiàng)展開(kāi)式的通項(xiàng)求解指定項(xiàng),屬于基礎(chǔ)試題
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在直角坐標(biāo)坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)P向y軸作垂線段PP′,P′為垂足.
          (1)求線段PP′中點(diǎn)M的軌跡C的方程.
          (2)過(guò)點(diǎn)Q(一2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)(-
          4
          17
          ,0),且以言
          a
          =(0,1)
          為方向向量的直線上一動(dòng)點(diǎn),滿足
          ON
          =
          OA
          +
          OB
          (O為坐標(biāo)原點(diǎn)),問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x(
          1
          2
          x+
          1
          x+1
          ,A0為坐標(biāo)原點(diǎn),A為函數(shù)y=f(x)圖象上橫坐標(biāo)為n(n∈N*)  的點(diǎn),向量
          an
          =
          n
          k=1
          Ak-1Ak
          ,向量
          i
          =(1,0),設(shè)θn為向量
          an
          與向量
          i
          的夾角,滿足
          n
          k=1
          tanθk
          5
          3
          的最大整數(shù)n是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•陜西)設(shè)函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
          (1)設(shè)n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
          12
          ,1)
          內(nèi)存在唯一的零點(diǎn);
          (2)設(shè)n為偶數(shù),|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
          (3)設(shè)n=2,若對(duì)任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)n∈N*,n>1,用數(shù)學(xué)歸納法證明:1+
          1
          2
          +
          1
          3
          +…+
          1
          n
          n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)集序列{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個(gè)集合有n個(gè)元素,每一個(gè)集合都由連續(xù)正奇數(shù)組成,并且每一個(gè)集合中的最大數(shù)與后一個(gè)集合中的最小數(shù)是連續(xù)奇數(shù).
          (1)求第n個(gè)集合中各數(shù)之和Sn的表達(dá)式;
          (2)設(shè)n是不小于2的正整數(shù),f(n)=
          n
          i=1
          1
          3Si
          ,求證:n+
          n-1
          i=1
          f(i)=nf(n)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案