日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,過(guò)曲線(xiàn)C:y=ex上一點(diǎn)P0(0,1)作曲線(xiàn)C的切線(xiàn)l2交x軸于點(diǎn)Q1(x1,0),又x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)P1(x1,y1),然后再過(guò)P1(x1,y1)作曲線(xiàn)C的切線(xiàn)l1交x軸于點(diǎn)Q2(x2,0),又過(guò)Q2作x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)P2 (x2,y2),……,以此類(lèi)推,過(guò)點(diǎn)Pn的切線(xiàn)ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1作x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)Pn+1(xn+1,yn+1)(n∈N*),
          (1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)曲線(xiàn)C與切線(xiàn)ln及直線(xiàn)PQ所圍成的圖形面積為Sn,求Sn的表達(dá)式;
          (3)在滿(mǎn)足(2)的條件下,若數(shù)列{Sn}的前n項(xiàng)和為T(mén)n,求證:。
          (1)解:由y′=ex,設(shè)直線(xiàn)ln的斜率為kn,則,
          ∴直線(xiàn)ln的方程為y=x+1,
          令y=0,得x1=-1,,
          ,∴,
          ∴直線(xiàn)l1的方程為
          令y=0,得x2=-2,
          一般地,直線(xiàn)ln的方程為,
          由于點(diǎn)在直線(xiàn)ln上,∴
          ∴數(shù)列{xn}是首項(xiàng)為-1,公差為-1的等差數(shù)列,
          。
          (2)解:;
          (3)證明:,
          ,
          要證明,
          只要證明
          即只要證明,

          ,
          ∴不等式對(duì)一切n∈N*都成立.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,過(guò)曲線(xiàn)C:y=e-x上一點(diǎn)P0(0,1)做曲線(xiàn)C的切線(xiàn)l0交x軸于Q1(x1,0)點(diǎn),又過(guò)Q1做x軸的垂線(xiàn)交曲線(xiàn)C于P1(x1,y1)點(diǎn),然后再過(guò)P1(x1,y1)做曲線(xiàn)C的切線(xiàn)l1交x軸于Q2(x2,0),又過(guò)Q2做x軸的垂線(xiàn)交曲線(xiàn)C于P2(x2,y2),…,以此類(lèi)推,過(guò)點(diǎn)Pn的切線(xiàn)ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1做x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)Pn+1(xn+1,yn+1)(n=1,2,3,…).
          (1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)曲線(xiàn)C與切線(xiàn)ln及垂線(xiàn)Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;
          (3)若數(shù)列{Sn}的前n項(xiàng)之和為T(mén)n,求證:
          Tn+1
          Tn
          xn+1
          xn
          (n∈N+).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,過(guò)曲線(xiàn)C:y=e-x上一點(diǎn)P0(0,1)做曲線(xiàn)C的切線(xiàn)l0交x軸于Q1(x1,0)點(diǎn),又過(guò)Q1做x軸的垂線(xiàn)交曲線(xiàn)C于P1(x1,y1)點(diǎn),然后再過(guò)P1(x1,y1)做曲線(xiàn)C的切線(xiàn)l1交x軸于Q2(x2,0),又過(guò)Q2做x軸的垂線(xiàn)交曲線(xiàn)C于P2(x2,y2),…,以此類(lèi)推,過(guò)點(diǎn)Pn的切線(xiàn)ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1做x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)Pn+1(xn+1,yn+1)(n=1,2,3,…).
          (1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)曲線(xiàn)C與切線(xiàn)ln及垂線(xiàn)Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;
          (3)若數(shù)列{Sn}的前n項(xiàng)之和為T(mén)n,求證:數(shù)學(xué)公式(n∈N+).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省西安市西工大附中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          如圖,過(guò)曲線(xiàn)C:y=e-x上一點(diǎn)P(0,1)做曲線(xiàn)C的切線(xiàn)l交x軸于Q1(x1,0)點(diǎn),又過(guò)Q1做x軸的垂線(xiàn)交曲線(xiàn)C于P1(x1,y1)點(diǎn),然后再過(guò)P1(x1,y1)做曲線(xiàn)C的切線(xiàn)l1交x軸于Q2(x2,0),又過(guò)Q2做x軸的垂線(xiàn)交曲線(xiàn)C于P2(x2,y2),…,以此類(lèi)推,過(guò)點(diǎn)Pn的切線(xiàn)ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1做x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)Pn+1(xn+1,yn+1)(n=1,2,3,…).
          (1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)曲線(xiàn)C與切線(xiàn)ln及垂線(xiàn)Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;
          (3)若數(shù)列{Sn}的前n項(xiàng)之和為T(mén)n,求證:(n∈N+).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,過(guò)曲線(xiàn)C:y=e-x上一點(diǎn)P(0,1)做曲線(xiàn)C的切線(xiàn)l交x軸于Q1(x1,0)點(diǎn),又過(guò)Q1做x軸的垂線(xiàn)交曲線(xiàn)C于P1(x1,y1)點(diǎn),然后再過(guò)P1(x1,y1)做曲線(xiàn)C的切線(xiàn)l1交x軸于Q2(x2,0),又過(guò)Q2做x軸的垂線(xiàn)交曲線(xiàn)C于P2(x2,y2),…,以此類(lèi)推,過(guò)點(diǎn)Pn的切線(xiàn)ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1做x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)Pn+1(xn+1,yn+1)(n=1,2,3,…).
          (1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
          (2)設(shè)曲線(xiàn)C與切線(xiàn)ln及垂線(xiàn)Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;
          (3)若數(shù)列{Sn}的前n項(xiàng)之和為T(mén)n,求證:(n∈N+).

          查看答案和解析>>