日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓左焦點是,右焦點是,右準(zhǔn)線是,上一點,與橢圓交于點,滿足,則等于(   )
          A.B.C.D.
          B.

          分析:先求出焦點坐標(biāo)及準(zhǔn)線方程,由向量間的關(guān)系得出 點Q 分有向線段F1P 成的比為λ= ,由定比分點坐標(biāo)公式求得 Q的橫坐標(biāo),
          代入橢圓的方程可得Q的縱坐標(biāo),進(jìn)而求得|QF2|.

          解:如圖F1(-1,0)、F2(1,0),右準(zhǔn)線l方程x=5,
          ∵2+3=,∴+=,
          =,QP=2QF1,∴點 Q 分有向線段F1P 成的比為λ=,
          設(shè) Q(m,n),則由定比分點坐標(biāo)公式得m==1,
          把Q(m,n)代入橢圓的方程得 n=±
          ∴|QF2|=,
          故選B.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓P的中心O在坐標(biāo)原點,焦點在軸上,且經(jīng)過點A(0,),離心率為。
          (1)求橢圓P的方程;
          (2)是否存在過點E(0,-4)的直線交橢圓P于兩不同點,,且滿足,若存在,求直線的方程;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (13分)
          在直角坐標(biāo)系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負(fù)半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
          (I)求軌跡C的方程;
          (II)當(dāng)時,求k與b的關(guān)系,并證明直線過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若橢圓的左、右焦點分別為,拋物線的焦點為F。若,則此橢圓的離心率為         。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          求橢圓為參數(shù))的準(zhǔn)線方程

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)標(biāo)準(zhǔn)橢圓的兩焦點為在橢圓上,且.  (1)求橢圓方程;(2)若N在橢圓上,O為原點,直線的方向向量為,若交橢圓于A、B兩點,且NA、NB軸圍成的三角形是等腰三角形(兩腰所在的直線是NANB),則稱N點為橢圓的特征點,求該橢圓的特征點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓的焦點為,點在該橢圓上,且,則點軸的距離為(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點P在橢圓上,焦點為F1、F2,且∠F1PF2=30°,求△F1PF2的面積.(8分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知,焦點在y軸上的橢圓的標(biāo)準(zhǔn)方程是           

          查看答案和解析>>

          同步練習(xí)冊答案