(本題滿分14分)
如圖甲,在平面四邊形ABCD中,已知,
,現(xiàn)將四邊形ABCD沿BD折起,
使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱
AC、AD的中點(diǎn).
(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.
(1)證明:在圖甲中∵且
∴
,
即--------------------------------------------------------------------------------------2分
在圖乙中,∵平面ABD平面BDC , 且平面ABD
平面BDC=BD
∴AB⊥底面BDC,∴AB⊥CD.------------------------------------------4分
又,∴DC⊥BC,且
∴DC平面ABC. -----------------------------------------------------5分
(2)解法1:∵E、F分別為AC、AD的中點(diǎn)
∴EF//CD,又由(1)知,DC平面ABC,
∴EF⊥平面ABC,垂足為點(diǎn)E
∴∠FBE是BF與平面ABC所成的角-------------------------------------7分
在圖甲中,∵, ∴
,
設(shè)則
,
,
-9分
∴在Rt△FEB中,
即BF與平面ABC所成角的正弦值為.---------------------------------10分
解法2:如圖,以B為坐標(biāo)原點(diǎn),BD所在的直線為x軸建立空間直角坐標(biāo)系如下圖示, 設(shè)
,則
,
----------------6分
可得,
,
,
,
∴,
-------------8分
設(shè)BF與平面ABC所成的角為
由(1)知DC平面ABC
∴
∴------------------------------------------------------10分
(3)由(2)知 FE⊥平面ABC,
又∵BE平面ABC,AE
平面ABC,∴FE⊥BE,F(xiàn)E⊥AE,
∴∠AEB為二面角B-EF-A的平面角----------------------------------------------12分
在△AEB中,
∴
即所求二面角B-EF-A的余弦為.----------------------------14分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),
(1)求證:;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF//平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、
的邊長都是1,平面
平面
,點(diǎn)
在
上移動(dòng),點(diǎn)
在
上移動(dòng),若
(
)
(I)求的長;
(II)為何值時(shí),
的長最;
(III)當(dāng)的長最小時(shí),求面
與面
所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點(diǎn)。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com