日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=ax3+bx2+cx+d是定義在R上的函數(shù),它在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
          (Ⅰ)求c的值;
          (Ⅱ)在函數(shù)f(x)的圖象上是否存在點(diǎn)M(x,y),使得f(x)在點(diǎn)M的切線斜率為3b?若存在,求出M點(diǎn)的坐標(biāo),若不存在,則說明理由;
          (Ⅲ)設(shè)f(x)的圖象交x軸于A、B、C三點(diǎn),且B的坐標(biāo)為(2,0),求線段AC的長度|AC|的取值范圍.
          【答案】分析:(1)利用函數(shù)f(x)的單調(diào)區(qū)間判斷出x=0是函數(shù)的極值點(diǎn),利用函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0,列出方程求出c的值.
          (2)將c的值代入導(dǎo)函數(shù),令導(dǎo)函數(shù)為0求出方程的兩個(gè)根即兩個(gè)極值點(diǎn),據(jù)函數(shù)的單調(diào)性,判斷出根 與區(qū)間端點(diǎn)的關(guān)系,列出不等式組求出 的范圍.假設(shè)存在,根據(jù)導(dǎo)數(shù)的幾何意義,列出方程,通過判斷判別式的符號(hào)得到結(jié)論.
          (3)設(shè)出f(x)的三個(gè)零點(diǎn),寫出f(x)的利用三個(gè)根不是的解析式,將x=2代入,利用韋達(dá)定理求出A,C的距離,據(jù)(2)求出|AC|的最值.
          解答:解:(1)由條件可知f(x)在區(qū)間[-1,0]和[0,2]上有相反的單調(diào)性,
          ∴x=0是f(x)的一個(gè)極值點(diǎn),
          ∴f′(0)=0
          而f′(x)=3ax2+2bx+c,
          故c=0.
          (2)令f′(x)=0,則3ax2+2bx=0,
          解得
          又f(x)在區(qū)間[0,2]和[4,5]上有相反的單調(diào)性,
          解得
          假設(shè)存在點(diǎn)M(x,y),使得f(x)在點(diǎn)M處的切線斜率為3b,則f'(x)=3b
          ,∴△<0,x無解
          故不存在點(diǎn)M(x,y),使得f(x)在點(diǎn)M處的切線斜率為3b
          (3)設(shè)A(α,0),C(β,0),
          則由題意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)
          ,解得
          又∵函數(shù)f(x)的圖象交x軸于B(2,0),
          ∴f(2)=0即8a+4b+d=0
          ∴d=-4(b+2a),

          從而 =

          ∴當(dāng) 時(shí),|AC|max=;當(dāng) 時(shí),|AC|min=3.
          所以3≤|AC|≤
          點(diǎn)評(píng):本題考查極值點(diǎn)處的函數(shù)值為0,極值點(diǎn)左右兩邊的導(dǎo)函數(shù)符號(hào)相反;解決二次方程的根的問題常用到韋達(dá)定理.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax3+bx+2,且f(-5)=3,則f(5)的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax3-bx+1且f(-4)=7,則f(4)=
          -5
          -5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax3+bx+1,f(-2)=2,則f(2)=
          0
          0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,則f(-3)=
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F(x)=ax3+bx5+cx3+dx-6,F(xiàn)(-2)=10,則F(2)的值為( 。
          A、-22B、10C、-10D、22

          查看答案和解析>>

          同步練習(xí)冊(cè)答案