日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的導函數(shù)為f′(x),且f(-x)=f(x),f(1)=1,f′(-1)=-2.數(shù)列{an}滿足a1=1,且當n≥2,n∈N*時,an=n2[數(shù)學公式+數(shù)學公式+…+數(shù)學公式].
          (1)求函數(shù)f(x)的解析式;
          (2)當n≥2且n∈N*時,比較數(shù)學公式數(shù)學公式的大。
          (3)比較(1+數(shù)學公式)(1+數(shù)學公式)(1+數(shù)學公式)L(1+數(shù)學公式)與4的大。

          解:(1)∵f(x)=ax2+bx+c,∴由f(-x)=f(x),有b=0,得f(x)=ax2+c.又f(1)=1,f′(-1)=-2,∴a+c=1,2a×(-1)=-2,∴a=1,c=0,∴f(x)=x2
          (2)∵f(n)=n2,∴.,∴,∴
          (3)由題意可得a2=4;當n=1時,有.當n≥2且n∈N*時,
          (1+)(1+)(1+)L(1+)=4(
          所以,對任意n∈N*有(1+)(1+)(1+)L(1+)<4.
          分析:(1)利用由f(-x)=f(x),有b=0,從而f(x)=ax2+c,f(1)=1,f′(-1)=-2,可求a、c的值,從而可求函數(shù)表達式;
          (2)分別表示出分子、分母,進而可得;
          (3)將連乘積表示為(1+)(1+)(1+)L(1+)=,再用裂項求和法,利用可得結(jié)論.
          點評:本題考查數(shù)列與不等式的結(jié)合,考查裂項求和、放縮法,有一定的技巧.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
          (Ⅰ)求f(x)的表達式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

          查看答案和解析>>

          同步練習冊答案