日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          (1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.
          (2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
          (3)已知A是曲線ρ=12sinθ上的動點,B是曲線上的動點,試求AB的最大值.
          (4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明

          【答案】分析:(1)根據切割線定理,得到AM是MB和MC的比例中項,結合AM=MP,∠BMP=∠PMC,得△BMP∽△PMC,從而得到對應角相等,命題得證;
          (2)四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1仍為梯形,且上、下底及高都不變,故面積相等;
          (3)把極坐標方程化為直角坐標方程,可得兩曲線分別表示一個圓,求出兩圓的圓心距,可得兩圓相交,故線段AB長的最大值等于圓心距加上兩個圓的半徑;
          (4)題中連接P與三角形的三個頂點,分成的三個小三角形面積的和等于大三角形,可得ax+by+cz=2S=,再利用柯西不等式即可得證.
          解答:(1)證明:∵AM切圓于點A,∴AM2=MB•MC
          又∵M為PA中點,AM=MP,∴MP2=MB•MC,∴
          ∵∠BMP=∠PMC,∴△BMP∽△PMC,∴∠MCP=∠MPB.
          (2)四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1頂點坐標為A1(0,1),B1(2,2k+1),C1(2,2k+3),D1(0,2),四邊形A1B1C1D1仍為梯形,且上、下底及高都不變,故面積相等;
          (3)曲線ρ=12sinθ化為直角坐標方程為 x2+(y-6)2=36,表示以(0,6)為圓心,以6為半徑的圓.
          曲線化為直角坐標方程為 x2+y2=6x+6y,即 (x-32+(y-3)2=36,
          表示以(3,3 )為圓心,以6為半徑的圓.
          兩圓的圓心距的平方為 (0-32+(6-3)2 =36,故兩圓相交,線段AB長的最大值為6+r+r′=18.
          (4)連接P與三角形的三個頂點,分成的三個小三角形面積的和等于大三角形,即(ax+by+cz)=S,∴ax+by+cz=2S=
          =×+×+×
          ×[++]
          =×()=×=

          點評:本題考查了圓當中的比例線段,以及三角形相似的有關知識點,考查把極坐標方程化為直角坐標方程的方法,以及兩圓的位置關系,求出兩圓的圓心距,考查矩陣與變換,考查不等式的證明,綜合性強
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          選修4-1:幾何證明選講
          自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.
          (2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣M=
          10
          k1
          表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
          (3)已知A是曲線ρ=12sinθ上的動點,B是曲線ρ=12cos(θ-
          π
          6
          )
          上的動點,試求AB的最大值.
          (4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
          x
          +
          y
          +
          z
          1
          2R
          a2+b2+c2

          查看答案和解析>>

          科目:高中數學 來源:江蘇同步題 題型:解答題

          (附加題)
          (1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.
          求證:∠MCP=∠MPB.
          (2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
          (3)已知A是曲線ρ=12sinθ上的動點,B是曲線上的動點,試求AB的最大值.
          (4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          (1)自圓O外一點P引切線與圓切于點A,M為PA中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.
          (2)在平面直角坐標系xOy中,已知四邊形ABCD的四個頂點A(0,1),B(2,1),C(2,3),D(0,2),經矩陣M=
          10
          k1
          表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結論.
          (3)已知A是曲線ρ=12sinθ上的動點,B是曲線ρ=12cos(θ-
          π
          6
          )
          上的動點,試求AB的最大值.
          (4)設p是△ABC內的一點,x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
          x
          +
          y
          +
          z
          1
          2R
          a2+b2+c2
          精英家教網

          查看答案和解析>>

          同步練習冊答案