已知函數(shù)

.
(Ⅰ)若

為

的極值點,求

的值;
(Ⅱ)若

的圖象在點(

)處的切線方程為

,求

在區(qū)間

上的最大值;
(Ⅲ)當

時,若

在區(qū)間

上不單調(diào),求

的取值范圍.
解:(Ⅰ)

1分


4分
(Ⅱ)

即


的斜率為-1,

6分

∴

,可知

和

是

的兩個極值點.
∵

∴

在區(qū)間

上的最大值為8. 8分
(3)因為函數(shù)

在區(qū)間

不單調(diào),所以函數(shù)

在

上存在零點,而

的兩根為

,區(qū)間長為2
在區(qū)間

上不可能有兩個零點,所以

10分
即

,


。 12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知函數(shù)

.
(Ⅰ)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)若函數(shù)f(x)的圖象在x = 1處的切線的斜率為0,且

,已
知a
1 = 4,求證:a
n³ 2n + 2;
(Ⅲ)在(Ⅱ)的條件下,試比較

與

的大小,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分13分)已知函數(shù)

(I)若函數(shù)

在

上是減函數(shù),求實數(shù)

的取值范圍;
(II)令

,是否存在實數(shù)

,當

(

是自然常數(shù))時,函數(shù)

的最小值是3若存在,求出

的值;若不存在,說明理由;
(改編)(Ⅲ)當

時,證明:

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)

的遞增區(qū)間是( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)f(x)=

,x∈[0,2].
(1)求f(x)的值域;
(2)設(shè)a≠0,函數(shù)g(x)=

ax
3-a
2x,x∈[0,2].若對任意x
1∈[0,2],總存在x
2∈[0,2],使f(x
1)-g(x
2)=0.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,

是半圓的直徑,點

在半圓上,

,垂足為

,且

,設(shè)

,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)f(x)=

單調(diào)遞增區(qū)間為_______________________。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)

的單調(diào)遞增區(qū)間是
.
查看答案和解析>>