日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐P—ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn).已知PA⊥AC,PA=6,BC=8,DF=5.

          求證:(1)直線PA∥平面DFE;
          (2)平面BDE⊥平面ABC.

          (1)詳見(jiàn)解析; (2) 詳見(jiàn)解析.

          解析試題分析:(1) 由線面平行的判定定理可知,只須證PA與平面DEF內(nèi)的某一條直線平行即可,由已知及圖形可知應(yīng)選擇DE,由三角形的中位線的性質(zhì)易知: DE∥PA ,從而問(wèn)題得證;注意線PA在平面DEG外,而DE在平面DEF內(nèi)必須寫清楚;(2) 由面面垂直的判定定理可知,只須證兩平中的某一直線與另一個(gè)平面垂直即可,注意題中已知了線段的長(zhǎng)度,那就要注意利用勾股定理的逆定理來(lái)證明直線與直線的垂直;通過(guò)觀察可知:應(yīng)選擇證DE垂直平面ABC較好,由(1)可知:DE⊥AC,再就只須證DE⊥EF即可;這樣就能得到DE⊥平面ABC,又DE平面BDE,從面而有平面BDE⊥平面ABC.
          試題解析:(1)因?yàn)镈,E分別為PC,AC的中點(diǎn),所以DE∥PA.
          又因?yàn)镻A平面DEF,DE平面DEF,所以直線PA∥平面DEF.
          (2)因?yàn)镈,E,F(xiàn)分別人棱PC,AC,AB的中點(diǎn),PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.
          又因?yàn)镈F=5,故DF2=DE2+EF2,所以∠DEF=90。,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.
          因?yàn)锳C∩EF=E,AC平面ABC,EF平面ABC,所以DE⊥平面ABC.
          又DE平面BDE,所以平面BDE⊥平面ABC.
          考點(diǎn):1.線面平行;2.面面垂直.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,底面是正方形,⊥平面,,分別是,的中點(diǎn).
          (Ⅰ) 求證:
          (Ⅱ)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,平面平面,四邊形為矩形,的中點(diǎn),.(1)求證:;(2)若與平面所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知四棱錐的底面為直角梯形,底面,且,的中點(diǎn).

          (1)證明:面
          (2)求所成的角的余弦值;
          (3)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在斜三棱柱中,側(cè)面,,底面是邊長(zhǎng)為的正三角形,其重心為點(diǎn),是線段上一點(diǎn),且

          (1)求證:側(cè)面
          (2)求平面與底面所成銳二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱柱中,已知平面平面,.
          (1)求證:
          (2)若為棱上的一點(diǎn),且平面,求線段的長(zhǎng)度

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)
          如圖,四棱錐中,⊥平面,,,分別為線段的中點(diǎn).

          (1)求證:∥平面;    
          (2)求證:⊥平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面
          底面,且,分別為、的中點(diǎn).

          (1)求證:平面;   
          (2)求證:面平面;
          (3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

          棱長(zhǎng)為1的正方體和它的外接球與一個(gè)平面相交得到的截面是一個(gè)圓及它的內(nèi)接正三角形,那么球心到截面的距離等于   ▲ .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案